

Fifth Semester B.E./B.Tech. Degree Examination, Dec.2024/Jan.2025 Fundamentals of VLSI Design

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. M : Marks , L: Bloom's level , C: Course outcomes.

		Module – 1	M	L	С
Q.1	a.	Demonstrate the steps involved in nMOS fabrication by out lining the key	08	L3	CO1
-		processes and illustrating necessary fabrication structures.			
	b.	Discuss Moore's law.	04	L2	CO1
*	c.	Derive an expression for I _{ds} for both saturated and unsaturated regions.	08	L3	CO1
		OR			
Q.2	a.	Compare CMOS and Bi-polar technologies.	04	L2	CO2
-	b.	Demonstrate your understanding of MOS transistor threshold voltage V _t by explaining its concept.	08	L3	CO2
	c.	Derive an expression for MOS transconductance, g_m .	08	L2	CO2
	L.	Module – 2			
03	0	Outline the current versus input voltage characteristics of CMOS inverter	06	L2	CO2
Q.3	a.	with different regions.			
	b.	Define Z_{pu}/Z_{pd} . Show that pull up to pull down ratio for n-MOS inverter	08	L3	CO3
		driven through one or more pass transistors is 8:1.	06	TO	COL
	c.	Explain about the Latch-up effect in p-well structure.	06	L2	CO3
<u> </u>	1		06	10	CO2
Q.4	a.	Illustrate with neat circuit diagrams, different forms of pull-up.	06	L2	
	b.	Calculate the total capacitance in pFarads between substrate and structure	08	L3	CO2
		as shown in Fig.Q4(b) below for $\lambda = 5 \ \mu m$. Use standard values.			
		K-42-1002			
		Metal 2A			
		Total Ciston WIII 22		30	
	6	2A			
		Polysilicon.			
		Fig.Q4(b)			
	c.	Estimate inverter delay in terms of Rise and Fall time.	06	L2	CO2
A.L	1	Module – 3			
Q.5	a.	Derive scaling factors for any 10 device parameters.	10	L3	CO4
	b.	Explain about nMOS layout design rules.	05	L2	CO4
	c.	Construct a simple n-well based BiCMOS inverter stick diagram.	05	L3	CO4
		OR			
Q.6	a.	Examine the limitations of scaling in MOS technology by illustrating how	10	L3	CO4
×	1	subthreshold currents impose constraints.			
	b.		05	L2	CO4
	b.	Briefly discuss about λ -based [Lambda] design rules and layout	05	L2	CO4
	b. c.		05 05	L2 L3	CO4

BEE515D

		Module – 4			
Q.7	a.	Explain properties of pass transistors and transmission gate.	06	L2	CO 4
	b.	Construct a 4×4 cross bar switch with neat diagram.	08	L3	CO4
	c.	Prove that for pseudo nMOS logic $Z_{pu}/Z_{pd} = 3/1$.	06	L3	CO4
		OR			
Q.8	a.	Explain the concept of dynamic CMOS logic.	06	L2	CO4
X	b.	Construct stick diagram and block diagram to explain the design approach	08	L3	CO4
		of parity generator using nMOS logic.			
	c.	Develop a combinational circuit to generate two phase clocking.	06	L3	CO4
		Module – 5			
Q.9	a.	Draw a neat diagram and explain the design of 4 bit serial- parallel	10	L2	CO4
τ		multiplier.			
	b.	Construct CMOS stick diagram and explain the operation of three transistor	10	L3	CO4
		dynamic RAM cell.			*
and a second second second		OR			
Q.10	a.	With a neat diagram, explain the operation of 4 bit carry look ahead adder.	10	L2	CO4
L	b.	Construct a JK flipflop circuit and outline its operation.	10	L3	COS
		57 538 57			
		ST OF ST			
<i>•</i>					

2201-2025 Olishis bolin