

Third Semester B.E./B.Tech. Degree Examination, Dec.2024/Jan.2025 Electric Circuit Analysis

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. M : Marks , L: Bloom's level , C: Course outcomes.

		Module – 1	Μ	L	С
Q.1	а.	Use source mobility of sources transformation to reduce the given network, shown in Fig Q1(a) into a single voltage source in series with a resistor between points a b. 3 - 6 + 6 + 6 + 6 + 6 + 6 + 6 + 6 + 6 + 6	6	L L3	CO
đ	b.	Fig Q1(a) Determine the equivalent resistance between the terminals MN for the networks shown in Fig Q1(b). $M \circ \frac{5}{4646} + 18$	6	L3	CO
	~ C.	N G_{A} G_{A} G_{A} G_{A} $Fig Q1(b)$ Use Mesh current analysis to find the power dissipated in the 80 Ω resistor of circuit shown in Fig Q1(c).	8	L3	СО
		$330\sqrt{2}$ $4n$ $8n$ $80n$ $360\sqrt{2}$ $3n$ $16n$ Fig Q1(c) 1 of 5			

3 of 5

4 of 5

