18EE32 # Third Semester B.E. Degree Examination, Dec.2024/Jan.2025 Electric Circuit Analysis Time: 3 hrs. Max. Marks: 100 Note: Answer any FIVE full questions, choosing ONE full question from each module. ### Module-1 - 1 a. Differentiate between: - i) Active and passive elements - ii) Unilateral and bilateral elements - iii) Linear and non-linear elements - iv) Independent and dependent sources - v) Ideal and practical sources. (10 Marks) b. Find the current through the 4Ω resistor using source transformation technique and hence determine the power absorbed in it for the circuit given in Fig.Q1(b). (10 Marks) OR 2 a. What is Supernode? - (03 Marks) - b. Find the equivalent RPQ between P and Q for the circuit given in Fig.Q2(b). Fig.Q2(b) (08 Marks) c. Find the Mesh currents for the circuit shown in Fig.Q2(c). 1 of 4 (09 Marks) Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. ## Module-2 a. State and explain superposition theorem. (05 Marks) b. Find the current through the 24Ω resistor using the venin theorem of the circuit shown in Fig.Q3(b). Fig.Q3(b) (08 Marks) Determine the value of Z_L for which power transferred form the source is maximum for the circuit shown in Fig.Q3(c). (07 Marks) OR 4 a. Find the current through the 10Ω resistor for the circuit shown in Fig.Q4(a). Use Millman's theorem. Fig.Q4(a) (06 Marks) b. Use Norton's theorem to find I_x for the circuit shown in the Fig.Q4(b). Fig.Q4(b) (08 Marks) c. State and explain reciprocity theorem. (06 Marks) #### Module-3 - 5 a. Show that the resonance frequency is the geometric mean of the two half power frequencies. (06 Marks) - b. An impedance coil having a resistance of 20Ω and an inductance of 0.02H is connected in series with capacitance of $0.01\mu F$. Calculate : - i) Q-factor - ii) Resonant frequency iii) The half power frequencies. (06 Marks) c. In the circuit shown in the Fig.Q5(c), the switch is closed at t = 0. Assuming all initial conditions as zero, find i(t), $\frac{di(t)}{dt}$ and $\frac{d^2i(t)}{dt^2}$ at $t = 0^+$. (08 Marks) #### OR 6 a. Determine the resonance frequency for the parallel circuit given in Fig.Q6(a). Fig.Q6(a) (06 Marks) b. In the networks shown in Fig.Q6(b), the switch S is moved from the position 1 to the position 2 at t = 0, steady state condition having reached before switching. Find i(t), $$\frac{di(t)}{dt}$$ and $\frac{d^2i(t)}{dt^2}$ at $t = 0^+$. (10 Marks) Fig.Q6(b) c. Define and derive the expression for dynamic impedance. Refer Fig.Q6(b). (04 Marks) #### Module-4 7 a. State and explain initial and final value theorem. (10 Marks) b. Find the Laplace transforms of: i) sinhwt ii) coswt. (04 Marks) c. State and explain first shifting theorem. (06 Marks) #### OR 8 a. Find the Lapalce transform of the periodic waveform shown the Fig.Q8(a). - b. Find the initial value of: i) $10\ell^{5t}$ ii) $5 \ell^{-3t}$. (05 Marks) - c. Find the inverse Lapalce therefore of: $$F(s) = \frac{5}{s^2 - 5s + 6} \,. \tag{05 Marks}$$ #### Module-5 - 9 a. A 400 V, 3-phase supply feeds an unbalanced 3-wire star connected load consisting of impedances $Z_R = 7 |\underline{10^\circ \Omega}$, $Z_Y = 8 |\underline{30^\circ \Omega}$ and $Z_B = 8 |\underline{50^\circ \Omega}$. Assume phase sequence as RYB. Determine the line currents. - b. Define Y-parameters and express Z-parameters in terms of Y- parameters. (10 Marks) #### OR 10 a. In the network shown in Fig.Q10(a), find the Y and Z-parameters. b. Define ABCD parameters. Establish the relationship between ABCD and Z- parameters given ABCD parameters. (10 Marks) * * * * *