

BEC502

Fifth Semester B.E/B.Tech. Degree Examination, Dec.2024/Jan.2025 Digital Signal Processing

CBCS SCHEME

Time: 3 hrs.

Max. Marks:100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. M : Marks, L: Bloom's level, C: Course outcomes.

	 a. b. c. a. b. c. 	List and discuss different discrete time signals. Explain the steps of converting along to digital signal interms of frequencies. Discuss the advantages and limitations of Digital Signal Processing (DSP). OR With an example, explain how to verify any signal is periodic or Not. Derive the equation for output of a LTI system and list the steps of convolution. Write a program to generate : i) Circuit step sequence ii) Sinusoidal sequence. Module – 2 Describe the properties of Z – transformation.	7 7 6 8 6 8 6	L2 L2 L2 L2 L3 L3	CO1 CO1 CO1 CO2 CO2
	c. a. b. c. a. b.	Discuss the advantages and limitations of Digital Signal Processing (DSP). OR With an example, explain how to verify any signal is periodic or Not. Derive the equation for output of a LTI system and list the steps of convolution. Write a program to generate : i) Circuit step sequence ii) Sinusoidal sequence. Module – 2 Describe the properties of Z – transformation.	6 6 8 6	L2 L2 L3	CO1 CO1 CO2
2 a b 3 a 4 a b	a. b. c. a. b.	OR With an example, explain how to verify any signal is periodic or Not. Derive the equation for output of a LTI system and list the steps of convolution. Write a program to generate : i) Circuit step sequence ii) Sinusoidal sequence. Module – 2 Describe the properties of Z – transformation.	6 8 6	L2 L3	CO1 CO2
3 a 4 a 1	b. c. a. b.	With an example, explain how to verify any signal is periodic or Not. Derive the equation for output of a LTI system and list the steps of convolution. Write a program to generate : i) Circuit step sequence ii) Sinusoidal sequence. Module – 2 Describe the properties of Z – transformation.	8	L3	CO2
3 a 4 a 1	b. c. a. b.	Derive the equation for output of a LTI system and list the steps of convolution. Write a program to generate : i) Circuit step sequence ii) Sinusoidal sequence. Module – 2 Describe the properties of Z – transformation.	8	L3	CO2
	с. а. b.	convolution. Write a program to generate : i) Circuit step sequence ii) Sinusoidal sequence. Module – 2 Describe the properties of Z – transformation.	6		
3 a t 4 a t	a. b.	 i) Circuit step sequence ii) Sinusoidal sequence. Module – 2 Describe the properties of Z – transformation. 		L3	CO2
4 a	b.	 ii) Sinusoidal sequence. Module – 2 Describe the properties of Z – transformation. 	7		
4 a	b.	Module – 2 Describe the properties of Z – transformation.	7		
4 a	b.	Describe the properties of Z – transformation.	7		
4 a	b.	Describe the properties of Z – transformation.	7		
4 a	b.		7		
4 a			7	L3	CO2
4 a		Show that Discrete Fourier Transform (DFT) is a Liner Transformation.	7	L3	CO2
4 a	C.	Compute the A-point DFT of $x(n) = \{1, 1, 0, 0\}$.	6	L3	CO2
ł		OR			
	a.	Compute the N-point DFT of, $x(n) = e^{j\omega mn}$.	6	L3	CO2
(b.	State and prove symmetry property of DFT for real valued sequence.	6	L3	CO2
	c.	Compute circular convolution of sequences :	8	L3	CO2
		$x_1(n) = \{2, 1, 2, 1\}$ and $x_2(n) = \{1, 2, 3, 4\}.$			
		Module – 3			
5 8	a.	State and prove circular item shift property of DFT.	6	L3	CO2
ł	b.	Compare DFT and FFT with examples.	6	L2	CO3
(c.	Compute Radix – 2 DIT FFT of the following – sequence, $x(n) = n + 1$, for	8	L3	CO3
		$0 \le n \le 7$.			
l		OR			I
6 8	a.	State and prove Parseval's theorem for – DFT's.	6	L3	CO2
ł	b.	Explain overlap – save method used for the convolution of long input sequences.	6	L2	CO3
(Develop an algorithm for Radix – 2 FFT without using built in function.	8	L3	CO3
	c.	Develop an argonum for Radix = 2 11 1 without using built in function.			

BEC502

		Module – 4			
7	a.	Obtain the frequency response expression for the symmetric linear phase FIR filter.	8	L3	CO4
	b.	Compare different widows used to design FIR filters.	6	L2	CO4
	с.	Design an FIR filter using hamming window for N = 7. The desired frequency response is given by $H_{d}(\omega) = \begin{cases} e^{-j3\omega} & \omega \le \frac{3\pi}{4} \\ 0, & \frac{3\pi}{4} < \omega \pi \end{cases}$	6	L3	CO4
0	0	OR , Discuss the characteristics of practical frequency selective filters.	6	L3	CO4
8	a. b.	Explain the steps of designing linear phase FIR high pass filter.	8	L3	CO4
	0. c.	Realize the system function of following FIR filter in cascade form.	6	L3	CO4
.•	0.	$H(z) = 1 - 2z^{-1} + \frac{1}{2}z^{-2} + \frac{1}{2}z^{-3} - \frac{1}{2}z^{-4}.$	Ū		
9	a.				1
		Explain the design procedure of analog Butter worth lowpass prototype – filter?	8	L3	
	b.	filter? Construct the system function in S – domain for $N = A$.	6	L3	CO
		filter?			COS COS COS
	b.	filter?Construct the system function in S – domain for N = A.Realize direct form – II for the IIR filter represented by	6	L3	CO
10	b.	filter? Construct the system function in S – domain for N = A. Realize direct form – II for the IIR filter represented by $y(n) - \frac{1}{4}y(n-1) + \frac{1}{8}y(x-2) = x(n) + \frac{1}{2}x(n-2)$.	6	L3	CO
0	b. c.	filter? Construct the system function in S – domain for N = A. Realize direct form – II for the IIR filter represented by $y(n) - \frac{1}{4}y(n-1) + \frac{1}{8}y(x-2) = x(n) + \frac{1}{2}x(n-2)$. OR Design the digital IIR filter for following details. –3dB gain at 0.5 π rads and	<u>6</u> 6	L3 L3	CO: CO:

2 of 2