CBCS SCHEME

USN							18EC55
		1	1	1	1	1 3	

Fifth Semester B.E. Degree Examination, Dec.2024/Jan.2025 **Electromagnetic Wave**

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. State and explain Coulomb's law in vector form.

(10 Marks)

b. If $\overline{D} = xy^2z^2\overline{a}_x + x^2yz^2\overline{a}_y + x^2y^2z\overline{a}_z$ c/m² find i) an expression for ρ_v ii) the total change within the cube defined by $0 \le x \le 2$; $0 \le y \le 2$; $0 \le z \le 2$. (10 Marks)

OR

- 2 a. Obtain an expression for electric field intensity due to infinite line charge. (10 Marks)
 - b. Define the following terms in electric field density i) Line charge iii) Surface charge iii) volume charge. (10 Marks)

Module-2

3 a. State and prove Gauss law for point charge.

(05 Marks)

b. State and prove divergence theorem.

(05 Marks)

- c. Give the electrical tube density $D = 0.3r^2 \bar{a}_r nc/m^2$ in free space.
 - i) Find E at Pt. $P(r = 2; \theta = 25^{\circ}; \phi = 90^{\circ})$.
 - ii) Find the total change within the sphere r = 3
 - iii) Find the total electric flux leaving the sphere r = 4.

(10 Marks)

OR

- 4 a. Obtain an expression for integral form of work done in moving a Pt. Charge Q from one position to another position. (08 Marks)
 - b. Calculate the work done in moving a 4C charge from B(1, 0, 0) to A(0, 2, 0) along the path y = 2 2x, z = 0 in the field $E = (1) 5 \overline{a}_x V/M$ (2) $5x \overline{a}_x V/m$ (06 Marks)
 - c. A 15 nc point charges ρ_S at the origin in free space. Calculate V_1 if point P is located at P(-2, 3, -1) and V = 0 at (6, 5, 4). (06 Marks)

Module-3

5 a. Drive the Poisson's and Laplaces equations.

(08 Marks)

b. State the prove the Stoke's theorem.

(06 Marks)

c. Let $V = 2xy^2z^3$ and $E = E_0$ given point P(1, 2, -1). Calculate i) V at P ii) E at P iii) ρ_v at P. (06 Marks)

OR

6 a. State and prove the Amperes circuital law.

(06 Marks)

b. Drive the expression for vector magnetic potential.

(06 Marks)

c. A current element $IdL = 10^{-3}(2 a_x + 4a_y - a_z)$ A/m located at A(-5, 3 -2) produces a field dH at B(3, -4, 3) i) Give a unit vector in the direction at dH at B ii) Find d(H) at B. (08 Marks)

Module-4

- 7 a. Derive an expression for the Force between differential current elements in magnetic field.
 (06 Marks
 - b. The field $B = -2\bar{a}_x + 3\bar{a}_y + 4\bar{a}_z$ mT is present in free space. Find the vector force exerted on a st. wire carrying 12A current in the a_{AB} direction given A(1, 1, 1) and B(2, 1, 1).

 (08 Marks)
 - c. An air core toroid has 500 turns mean radius of 15 cm cross sectional area of 6 cm². The magnetic motive force is 2000 AT. Calculate total reluctance flux, flux density, field intensity inside the core. (06 Marks)

OR

8 a. Write note on forces on magnetic materials.

(10 Marks)

b. Write a note on magnetic circuits.

(10 Marks)

Module-5

- 9 a. Drive the expression for a stationary closed path in a time varying field statically induced EMF. (06 Marks)
 - b. State Maxwell's equation in both point form and in integral form. (06 Marks)
 - c. Find the frequency at which conduction current density and displacement current density are equal in a medium with $\sigma = 2 \times 10^4$ and $\epsilon_r = 81$. (08 Marks)

OR

10 a. State and explain poynting theorem.

(08 Marks)

- b. Define the following terms in uniform plane wave i) phase velocity ii) Intrinsic impedance iii) wave length. (06 Marks)
- c. The depth at penetration in a certain conducting medium is 0.1 m and the frequency of the electromagnetic wave is 1.0 MHz. Find the conductivity of the conducting medium.

(06 Marks)