

Fourth Semester B.E./B.Tech. Degree Examination, Dec.2024/Jan.2025 Principles of Communication Systems

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. M : Marks , L: Bloom's level , C: Course outcomes.

		Module – 1	Μ	L	С		
Q.1	a.	Define probability. Illustrate the relationship between sample space, events	06	L1	CO1		
		and probability.					
	b.	Outline random processes and illustrate an ensemble of sample function	06	L2	CO1		
		with a neat diagram.					
	c.	Show that if a Gaussian process $x(t)$ is applied to a stable linear filter, then	08	L3	CO2		
		the random process $y(t)$ developed at the output of the filter is also		2			
		Gaussian.					
		OR					
Q.2	a.	What is conditional probability? Prove that	06	L1	CO1		
		$P(B/A) = P(A/B) \cdot P(B) / P(A)$					
	b.	Define mean, correlation and covariance function.	06	L2	CO2		
	c.	Develop a program to generate the probability density function of Gaussian	08	L3	CO2		
		distribution function. Module – 2					
Q.3	a.	An antenna has an impedance of 40 Ω an unmodulated AM signal produces	06	L1	CO1		
		a current of 4.8 A. The modulation is 90 percent calculate	-				
		i) The carrier power ii) The total power iii) The sideband power					
	b.	Explain with neat diagrams amplitude demodulation using the diode	07	L1	CO1		
		detector.					
	c.	Explain a general block diagram of an FDM system	07	L2	CO2		
		OR					
Q.4	a.	Interpret the concept of modulation index and percentage of modulation	06	L1	C01		
		write the necessary equations.					
	b.	Explain high level collector modulation with neat block diagram.	07	L2	C01		
	c.	Explain with diagrams the working principle of lattice type balanced	07	L2	CO2		
		modulator.					
	Module – 3						
Q.5	a.	Compare and contrast FM and AM.	06	L1	CO1		
	b.	Explain with diagrams the working principle of frequency modulation	07	L2	CO2		
		using voltage controlled oscillator.					
	c.	Explain general block diagram of a super heterodyne receiver.	07	L2	CO2		
		OR					
Q.6	a.	The input to an FM receiver having an S/N of 2.8. The modulating	06	L2	CO2		
		frequency is 1.5 KHz. The maximum permitted deviation is 4 KHz. What			2		
	1	are (i) The frequency deviation caused by the noise (ii) The improved					
		output S/N.	0=		0.00		
	b.	Define PLL. Explain the basic block diagram of a PLL.	07	L1	CO2		
	c.	Explain JFET mixer.	07	L2	CO2		

5

BEC402

~ -	<u>г т</u>	Module - 4	04	L1	CO
Q.7	a.	What are the advantages of digital signal over analog signals?			
-	b.	Explain with basic elements of a PCM system with neat diagrams.	08	L2	CO
	с.	For the data stream 0 1 1 0 1 0 0 1 draw the following line code	08	L3	CO
	1.1	waveforms			
-		i) Unipolar NRZ ii) Polar NRZ iii) Unipolar RZ iv) Manchestor code OR			
0.0			04	L1	CC
Q.8	a.	State and prove Sampling theorem. What is multiplexing and why is it required in communication? Explain the	04	L1 L2	CC
	b.	working of TDM with a neat block diagram.	00		
		Explain the generation of PPM with a relevant block diagrams and	08	L2	C
	c.	waveforms.	00		
		Module – 5			
Q.9	a.	Define Intersymbol interference (ISI) outline baseband binary data	08	L2	CC
Q.9	а.	transmission system with neat block diagram and equations.	00		
	b.	Develop a code to generate RZ pulse.	04	L3	C
10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	D. C.	Define signal to noise ratio. Explain different types of external and internal	08	L3	C
	с.	noise.	00		
		OR OR			
Q.10	a.	Explain the following concept briefly:	08	L1	CC
Q.10	a.	i) Nyquist criterion for distributors transmission	00		
		ii) Baseband M-ary PAM transmission	3		
	b.	Develop a code to generate Raised cosine pulse.	04	L2	C
	c.	Illustrate the concept of noise in cascaded stages with a diagram. Write	08	L2	C
		Friis formula and mention its terms.			
	<	Et 2 of 2			