

Fourth Semester B.E./B.Tech. Degree Examination, Dec.2024/Jan.2025 Control Systems

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. M : Marks , L: Bloom's level , C: Course outcomes.

BEC403

40 ⁸ .				BE	C403
	b.	Obtain the transfer function for the block diagram shown in Fig.Q4(b) using block diagram reduction technique. $\begin{array}{c} \hline H_2 \\ \hline $	10	L2	CO2
		Module – 3			
Q.5	a.	Make use of the response curve of 2 nd order under-damped system to define and derive the expression for (i) peak time (ii) peak overshoot (iii) rise time	10	L2	CO3
~	b.	Find K _p , K _v and K _a for a system having $G(s) = \frac{s+10}{s(s^3 + 7s^2 + 12s)}$. Also, evaluate the steady state error, when the I/P r(t) is given by: (i) r(t) = 5u(t) (ii) r(t) = 2t u(t) (iii) r(t) = 4t^2u(t)	10	L2	CO3
		OR			
Q.6	a.	Derive an expression for the under damped response of a second order feedback control system for step input.	10	1.2	CO2
	b.	Explain the static error constant and derive the expressions.	06	L2	CO2
	c.	Analyze the effect of PD controller for 2 nd order control system with appropriate equations.	04	L2	CO2
		Module – 4			
Q.7	а.	The open loop transfer function of a unity feedback system is given by $G(s) = \frac{K}{s(s+3)(s^2+s+1)}$ Find the value of K that will cause sustained oscillation and hence find the oscillation frequency.	08	L2	CO3
	b.	Sketch the root locus plot for a negative feedback control system whose open loop transfer function is given by $G(s)H(s) = \frac{K}{s(s+1)(s+2)(s+3)}$. For all values of K ranging from 0 to α . Find the value of K for closed loop stability.	12	L3	CO3
		OR			
Q.8	а.	For the characteristic equations given below, determine number of roots with positive real part: i) $s^6 + s^5 + 3s^4 + 2s^3 + 5s^2 + 3s + 1 = 0$ ii) $s^8 + s^7 + 4s^6 + 3s^5 + 14s^4 + 11s^3 + 20s^2 + 9s + 9 = 0$	10	L2	CO4

3 of 4

			BEC403		
	b.	Show that the part of root locus of a system with $G(s)H(s) = \frac{K(s+3)}{s(s+2)}$ is a circle having center (-3, 0) and radius at $\sqrt{3}$.	10	L3	CO3
		Module – 5			
Q.9	a.	Construct the bode plot for the transfer function $G(s) = \frac{80}{s(s+2)(s+20)}$. Determine GM and PM, ω_{pc} , ω_{gc} .	10	L2	CO3
	b.	Obtain the state transmition matrix for the following system: $\begin{bmatrix} x_1^1 \\ x_2^1 \end{bmatrix} = \begin{bmatrix} -1 & -0.5 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0.5 \\ 0 \end{bmatrix} u$	10	L2	CO5
		OR	1		
Q.10	a.	Using Nyquist stability criteria investigate the stability negative feedback control system whose open loop transfer function is given by $G(s)H(s) = \frac{100}{(s+1)(s+2)(s+3)}$. Assume $\omega_g = 1.253$ rad/sec.	10	1.2	C05
	b.	Obtain the state model of electrical network shown in Fig.Q10(b), by choosing $V_1(t)$ and $V_2(t)$ as state variables. $\begin{array}{c} R \\ R \\ Vlt) \\ F \\ Vlt) \\ F \\ I \\ I$	10	L3	CO5

* * * * *