CBCS SCHEME

USN			18CS61		
Sixth Semester B.E. Degree Examination, Dec.2024/Jan.2025 System Software and Compilers					
Time: 3 hrs. Max. Marks: 100					
Note: Answer any FIVE full questions, choosing ONE full question from each module.					
1	a.	Module-1 Define System Software. Distinguish between system software and application	n software.		
_	_		(06 Marks)		
	b.	Explain SIC/XE architecture	(08 Marks)		
	c.	Write an algorithm for pass 2 assembler of SIC assembler.	(06 Marks)		
•	OR COLO 11				
2	a.	Explain the data structure and pass 1 algorithm of SIC assembler.	(08 Marks)		
	b.	List all assembler independent and dependent features and explain program reloca	uon. (<mark>06 Marks</mark>)		
	c.	What is loader? What are the basic functions the loader has to perform?	(06 Marks)		
		Module-2			
3	a.	What is compiler? Explain various phases of compiler with the help of neat diagra	am. (10 Marks)		
	b.	Explain the concept of input buffering with sentinels in the lexical analysis.	(06 Marks)		
	c.	List the formal definitions of operations on languages with notations.	(04 Marks)		
		OR			
4	a.	Write the regular definition using extended regular expression notation and als	o draw the		
		transition diagram to recognize the following tokens: (i) Identifier (ii) Unsigned	(10 Marks)		
	b.	Explain three types of software productivity tools.	(05 Marks)		
		Enlist algebraic laws for regular expressions.	(05 Marks)		
	C. A		(00 1141110)		
5	9	Module-3 Define left-recursion grammar, also write an algorithm to eliminate left recurs	ion from a		
3	a.	grammar.	(05 Marks)		
	b.	How to verify whether grammar is LL(1) or not? Show that:			
		$S \rightarrow AaAb \mid BbBa$			
		$A \to E$ $B \to E$			
		is LL(1), without constructing any table.	(10 Marks)		

(05 Marks)

c. For the grammar $A \rightarrow (A) \mid a$, construct LR(0) set of items

OR

a. Explain the working of shift reduce parser. Parse the input string id * id using the grammar.

 $E \rightarrow E + T \mid T$

 $T \rightarrow T * F \mid F$

 $F \rightarrow (E) \mid id$

(08 Marks)

b. With a diagram, explain the model of an LR parser.

(04 Marks)

c. For the given grammar $E \rightarrow E + n/n$ construct parsing table of LL(1). Verify 3+4+7 and show each step of verification with reference to parsing table. (08 Marks)

Explain the structure of LEX program, with an example.

(06 Marks)

Write a LEX program for the tokens given below:

White it EEE program 101.					
Lexemes	Token Name	Attribute value			
Any WS					
if	if	-7			
then	then	()			
else 🙏 🥒	else	Gy Y			
Any id	id	Ptr to table entry			
Any number	number	Ptr to table entry			
	relop	LT			
<=	relop	LE			
=	relop 🧳	EQ 💍			
<>	relop	NE NE			
> 4, 4	relop	GT •			
>=	relop	GE			

(10 Marks)

Write a LEX program to count the number of vowels and consonants in a given input string. (04 Marks)

- List and explain with an example the different wildcard characters used in LEX. (08 Marks) 8
 - Write a YACC program to evaluate the arithmetic expression.

(06 Marks)

Explain the structure of YACC program.

(06 Marks)

Module-5

- Write annotated parse tree for 3 * 5 + 4n using top down approach. Write semantic rules for (10 Marks) each step.
 - b. Define (i) Synthesized attribute (ii) Inherited attribute.

(06 Marks)

Explain the concept of syntax directed definition.

(04 Marks)

OR

Construct DAG and three address code for the following expression: 10

$$a + a * (b - c) + (b - c) * d$$

(04 Marks)

b. Explain the following with an example:

i) quadruples ii) triples

(08 Marks)

c. Discuss the various issues in the design of a code generator.

(08 Marks)