

BCS503

Fifth Semester B.E./B.Tech. Degree Examination, Dec.2024/Jan.2025 Theory of Computation

Time: 3 hrs.

USN

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. M : Marks , L: Bloom's level , C: Course outcomes.

		Module – 1	Μ	L	C
Q.1	a.	Define the following with example : i) Language ii) String iii) Power of an alphabet.	3	L1	CO1
	b.	 Define DFA. Draw a DFA to accepts. i) The set of all strings that contain a substring aba. ii) To accept the stings of a's and b's that contain not more than there b's. iii) L = {w ∈ {a, b}* : No 2 consecutive characters are same in w}. 	10	L3	CO1
	c.	Convert the following NFA to DFA. $\rightarrow \frac{\begin{vmatrix} 0 & 1 \\ p & \{p,q\} & \{p\} \\ q & \{r\} & \{r\} \\ r & \{s\} & \phi \\ * & s & \{s\} & \{s\} \\ \end{vmatrix}$	7	L2	CO1
Q.2	a.	OR Define the following with example : i) Alphabet ii) Reversal of string iii) Concatenation of Languages.	3	L1	CO1
	b.	Design a DFA for the Language : $L = \{w \in \{0, 1\}^* : w \text{ is a string divisible by 5}\}.$	7	L3	CO1
	c.^	Define NFA. Obtain an ε - NFA which accepts strings consisting of 0 or more a's , followed by 0 or more b's followed by 0 or more C's. Also convert it to DFA.	10	L2	CO1
		Module – 2			
Q.3	a.	Define Regular expression. Write the regular expression for the following languages : i) Strings of a's and b's starting with a and ending with b. ii) Set of strings that consists of alternating 0's and 1's. iii) $L = \{a^n bm, (n + m) is even\}.$ iv) $L = \{w : / w / mod 3 = 0, where w \in \{a, b\}^*\}.$	10	L2	CO2

BCS503

	b.	Minimize the following finite automata using Table filling algorithm :	10	L2	CO2
		$ \rightarrow \begin{array}{c c} \delta & a & b \\ \hline A & B & A \\ \hline B & A & C \end{array} $			
		$\begin{array}{ccc} C & D & B \\ * & D & D & A \\ E & D & F \end{array}$			
		$\begin{array}{c c} \mathbf{E} & \mathbf{D} & \mathbf{F} \\ \mathbf{F} & \mathbf{G} & \mathbf{E} \\ \mathbf{G} & \mathbf{F} & \mathbf{G} \end{array}$			
		H G D			
		OR	6	L1	CO2
Q.4	a.	Construct ε - NFA for the following Regular expression : i) $(0+1) 0 1(1+0)$ ii) $1(0+1)^* 0$ iii) $(0+1)^* 0 1 1^*$	0	LI	02
	b.	Obtain the Regular expression that denotes the language accepted by Fig. Q4(b).	6	L3	CO2
		Fig. Q4(b) $\rightarrow \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & $			
		Using Kleene's theorem.			600
	c.	State the Pumping Lemma for the Regular Languages. And also prove that the following languages are note regular. i) $L = \{0^n \ 1^m \mid n \le m\}$ ii) $L = \{0^n \ 1^m \ 2^n \mid n, m \ge 1\}.$	8	L1	CO2
		Module – 3		-	
Q.5	a.	Design CFG for the following languages : i) $L = \{a^n b^{n+3}, n \ge 0\}$ ii) $L = \{a^i b^j c^k, j = i + k, i \ge 0, k \ge 0\}$ iii) $L = \{w / /w / \mod 3 > 0 \text{ where } w \in \{a\}^*\}$ iv) $L = \{a^m b^n / m \ne n\}$ v) Palinderomes over 0 and 1.	10	L3	CO3
	b.	Consider the grammar G with productions. $S \rightarrow A b B / A / B$; $A \rightarrow aA / \epsilon$; $B \rightarrow a B / b B / \epsilon$. Obtain LMD, RMD and parse tree for the string aaabab. Is the given grammar ambiguous?	10	L2	CO3
		A l'and			
0.6		OR Define the following with example :	4	L1	CO3
Q.6	a.	i) Context free grammar iii) Left most Derivation iii) Parse tree iv) Ambiguous grammar.			
	b.	Design PDA for the language : $L = \{a^i b^j c^k / i + k = j, i \ge 0, k \ge 0\}$ and show the moves made by the PDA for the string aabbbc.	10	L3	CO3
		2 of 3			
		State of the second			

BCS503

					000
	c.	Convert the following CFG's to PDA :	6	L2	CO3
		$S \rightarrow a A$; $A \rightarrow a ABC / bB / a$; $B \rightarrow b$; $C \rightarrow c$.			
		Module – 4			
2.7	a.	Define CNF. Convert the following CFG to CNF	10	L2	CO 4
2.1		$E \rightarrow E + T / T$			
		$T \rightarrow T * F / F$			
		$F \rightarrow (E) / I$			
		$I \rightarrow Ia / Ib / a / b.$			
		(0, 1, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,	4	L2	CO 4
	b.	Show that $L = \{0^n 1^n 2n / n \ge 1\}$ is no context free.			00.
	0	Prove that the family of context free languages is closed under union and	6	L1	CO 4
	c.	concatenation.			
		concatenation.			
		OR	6	L2	CO4
Q.8	a.	Define Greibach Normal Form. Convert the following CFG to GNF.	U	14	004
		$S \rightarrow AB$; $A \rightarrow aA/bB/b$; $B \rightarrow b$.			
	1	L & Y Cary	1.0		001
	b.	Consider the following CFG :	10	L3	CO4
		$S \rightarrow ABC / BaB$			
		$A \rightarrow aA / BaC / aaa$	Y		
		$B \rightarrow bBb/a/D$			
		$C \rightarrow CA / AC$			
		$D \rightarrow \epsilon$			
		i) What are useless symbols?			
		ii) Eliminate ε - productions , Unit productions and useless symbols from			
		the grammar.			
	0	Prove that the following languages are not context free.	4	L2	CO3
	c.	The first of the following angular set $T = \left(\frac{n^2}{n}\right)$			1
		i) $L = \{ai / i \text{ is prime}\}$ ii) $L = \{a^{n^2} / n \ge 1\}.$			
		Module – 5	6	L1	CO4
Q.9	a.	Define a turing machine and explain with neat diagram, the working of a	0	LI	0
		basic turing machine.			
	h	Design a Turing machine to accept the language, $L = \{a^n b^n c^n / n \ge 1\}$.	14	L4	CO
	b.	Draw the transition diagram and show the moves for the string aabbcc.			
	18 F	Draw the transition diagram and show are more a			
	1	OR			
•		UR	12	L4	CO
Q.10	a.	Design a Turing machine to accept palindrome over {a, b} and draw the	1 4		
		transition diagram.			
			-		00
	b.	Write a short notes on :	8	L1	CO
	0.				
		i) Recursively Enumerable Language.			
		ii) Multitape Turing Machine.			

* * * * *

3 of 3