

Fourth Semester B.E./B.Tech. Degree Examination, Dec.2024/Jan.2025 Microcontroller

Time: 3 hrs.

Max. Marks: 100

BCS402

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. M : Marks , L: Bloom's level , C: Course outcomes.

Module – 1					С						
Q.1	a.	Explain the purpose of various fields of current program status register with	05	L2	CO1						
		a neat diagram.									
	b.	Explain the ARM design philosophy.	06	L2	CO1						
	c.	Explain the core extensions of ARM processor with neat block diagram.	09	L2	CO1						
		OR									
Q.2	a.	Explain Embedded systems hardware with a neat block diagram.	06	L2	CO1						
	b.	What is pipelines in ARM? Illustrate with an example the pipeline stage of	09	L2	CO1						
		ARM 9 and ARM 10.									
	c.	Describe the RISC design philosophy with 4 design rules.	05	L2	CO1						
		Module – 2									
Q.3	a.	Explain the following with examples :	10	L2	CO2						
		(i) RSC (ii) MLA (iii) STRH (iv) SWP									
	b.	Explain the different data processing instruction in ARM.	10	L2	CO2						
OR OR											
Q.4	a.	Explain Barrel shifter instruction in ARM with suitable examples.	10	L2	CO2						
	b.	Explain the different branch instruction of ARM processor.	05	L2	CO2						
	c.	Explain co-processor instruction of ARM processor.	05	L2	CO2						
		Module – 3									
Q.5	a.	Explain the different basic data types in C. Provide examples of how each	08	L2	CO3						
		data type can be used in a C program.									
	b.	Discuss the concept of register allocation in compiler optimization.	07	L2	CO3						
		Illustrate its significance with an example.									
	c.	Describe the process of a function call in C. OR	05	L2	CO3						
Q.6	a.	Discuss the common portability issues faced when writing C programs.	07	L2	CO3						
		How can these issues be mitigated.			~~~						
	b.	Explain the concept of pointer aliasing with example.	07	L2	CO3						
	c.	How are function calls handled efficiently in calling function in C?	06	L2	CO3						
Module – 4											
Q.7	a.	What are interrupts? Discuss interrupt vector table with diagram for ARM	06	L2	CO4						
		processor.	06	TA	CO4						
	b.	Describe the sequence of operations that occurs when an ARM processor	06	L2	CO4						
	c.	handles an IRQ exceptions. Discuss the priority system for exception in ARM processor.	00	TO	<u>CO1</u>						
	08	L2	CO4								
OR											
Q.8	a.	Explain the role of the link register in ARM exception handling.	08 08	L2 L2	CO4 CO4						
	b.	Explain the design and implementation of an interrupt stack in a ARM-	vo	L4	004						
		based system. Explain the steps involved.	04	L2	CO4						
Q.	c.	What are the key differences between a boot loader and firmware?	04	114	004						

BCS402

Q.9	9	Module – 5 Explain the basic operation of a cache controller.	06	L2	CC
۷.۶	a. b.	With a neat diagram, explain the basic architecture of a cache memory.	10	L2 L2	CC
	р. с.	Mention any 4 relationship between cache and main memory.	04	L2	CC
		OR	-	T	
Q.10	·a.	Write a note on cache write policy both write back or write through.	10	L2	CC
	b.	Describe the allocation policy on a cache miss.	04	L2	CC
	c .	Write a note on following :	06	L2	CO
		(i) Write buffers(ii) Cache efficiency			
		With BRIST STATISTICS			