CBCS SCHEME

USN												18CS44
-----	--	--	--	--	--	--	--	--	--	--	--	--------

Fourth Semester B.E. Degree Examination, Dec.2024/Jan.2025 **Microcontroller and Embedded Systems**

Tiı	ne:	3 hrs. Max. M	Iarks: 100
	Λ	ote: Answer any FIVE full questions, choosing ONE full question from each mo	odule.
		Module-1	
1	a.	Differentiate between RISC and CISC processors.	(06 Marks)
	b.	Explain ARM core data flow model, with neat diagram.	(08 Marks)
	C.	Explain ARM registers used under various modes.	(06 Marks)
		OR OR	
2	a.	Explain the architecture of a typical embedded device based in ARM core,	with a neat
		diagram.	(08 Marks)
	b.	Explain the various fields in the current program status register.	(06 Marks)
	C.	Discuss the following with diagram:	
		i) Von Neuman architecture with cache.	
		ii) Harvard architecture with TCM.	(06 Marks)
		Module-2	
3	a.	Explain Barrel Shifter Operation, with neat diagram.	(06 Marks)
	b.	Write an ALP using instruction to find out the factorial of a given number.	(07 Marks)
	c.	Write a program to add an array of 16 bit numbers and store the 32 bit result	in internal
		RAM using ARM instructions.	(07 Marks)
		OR	
4	a.	Discuss the Load store instructions with respect to single register transfer along w	ith various
		addressing modes.	(10 Marks)
	b.	Write an ALP program to multiply two 16 bit numbers.	(05 Marks)
	c.	With example, explain the Swap Instructions.	(05 Marks)
		Module-3	
5	a.	Differentiate between:	
		i) Microprocessor and Microcontroller.	
		ii) Little Endian and Big Endian architecture.	(08 Marks)
	b.	With neat block diagram, explain the elements of embedded system.	(06 Marks)
	c.	Mention the application of embedded system with example of each.	(06 Marks)

OR

6	a.	Explain the different On board communication interfaces in brief.											
	b.	Write a note on:											
		i) Reset circuit ii) Watch dog timer.	(06 Marks)										
	C	Explain how program memory are classified.	(06 Marks)										

Module-4

a. Explain the Operational and non operational attributes of an embedded systems. (10 Marks)
b. Explain the different 'Embedded firmware design' approach in detail. (10 Marks)

OR

8 a. With a neat block diagram, explain design and working of Washing Machine. (10 Marks)
b. With FSM model, explain the design and operation of automatic tea/coffee vending

With FSM model, explain the design and operation of automatic tea/conce vending machine.

c. Explain Super loop based approach of embedded firmware design.

(04 Marks)

Module-5

9 a. Define Process. Explain in detail the Structure of Memory Organisation and State transitions of the process. (10 Marks)

b. Explain Multithreading, Multiprocessing and Multitasking.

(10 Marks)

OR

a. Explain with neat diagram, the concept of 'Dead lock' and mention the different conditions which favour a dead lock situation. (10 Marks)

b. With neat diagram, explain i) Binary Semaphore ii) Counting Semaphore. (10 Marks)

* * * * *