

Third Semester B.E./B.Tech. Degree Examination, Dec.2024/Jan.2025 Digital Design and Computer Organization

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. M : Marks , L: Bloom's level , C: Course outcomes.

		Module – 1	M	L	C
Q.1	a.	Determine the complement of the following function:	06	L3	C01
		(i) $F = xy' + x'y$ (ii) $F = x'yz' + x'y'z$			
	b.	Describe map method for three variables.	04	L2	C01
	c.	Apply K map technique to simplify the following function:	10	L3	C01
		(i) $F(x, y, z) = \Sigma(0, 2, 4, 5, 6)$			
		(ii) $F(x, y, z) = x'y + yz' + y'z'$			
		OR 0R	L		
Q.2	a.	a. Apply K map technique to simplify the function :			
		$F(w, x, y, z) = \Sigma(1, 3, 7, 11, 15)$ and $d(w, x, y, z) = \Sigma(0, 2, 5)$		L3	C01
	b.	Determine all the prime implicants for the Boolean function F and also	10	L3	C01
		determine which are essential $F(w, x, y, z) = \Sigma(0, 2, 4, 5, 6, 7, 8, 10, 13, 15)$			
	c.	Develop a verilog gate-level description of the circuit shown in Fig.Q2(c).	04	L3	C01
		A			
		B G3 I			
		L'ANTE			
		c 5, 6,			
		E = Eig(O2(a))			
		Fig.Q2(c) Module – 2			
0.2			10	L2	CO2
Q.3	a.	Explain the combinational circuit design procedure with code conversion	10	L2	
	1.	example.	10	L3	CO2
	b.	Design a full adder circuit. Also develop data flow verilog model for full	10	LJ	
	1	adder.			
0.4			10	L2	CO2
Q.4	a.	Describe 4×1 MUX with block diagram and truth table. Also develop a	10	14	02
		behavioral model verilog code for 4×1 MUX.	10		000
	b .	What are storage elements? Explain the working of SR and D latch along	10	L2	CO2
		with logic diagram and function table.			
		Module – 3			~~~
Q.5	a.	Explain the basic operational concepts between the processor and memory.	10	L2	CO3
	b.	Describe the following:	10	L2	CO3
		(i) Processor clock			
	*	(ii) Basic performance equation			
		(iii) Clock rate			
		(iv) SPEC rating ·			
		OR			
Q.6	a.	Define addressing mode. Explain any four types of addressing mode with	10	L2	CO3
-		example.			
		1 of 2			

BCS302

	-				
	b.	Mention four types of operations to be performed by instructions in a computer. Explain the basic types of instruction formats to carry out.	10	L2	(
		$C \leftarrow [A] + [B]$			
		Module – 4			
Q.7	a.	With a neat diagram, explain the concept of accessing I/O devices.	10	L2	
	b.	What is bus arbitration? Explain centralized and distributed arbitration	10	L2	
		method with a neat diagram.			
		OR			-
Q.8	a.	With neat sketches, explain various methods for handling multiple	10	L2	
-		interrupts requests raised by multiple devices.			
	b.	What is cache memory? Explain any two mapping function of cache	10	L2	
		memory.			
		Module – 5			
Q.9	a.	Draw the single bus architecture and write the control sequence for	10	L3	
		execution of instruction ADD (R_3) , R_1 .			
	b.	With suitable diagram, explain the concept of register transfer and fetching	10	L2	
		of word from memory.			
		OR			-
Q.10	a.	With a neat diagram, explain the flow of 4-stage pipeline operation.	10	L2	
	b.	Explain the role of cache memory and pipeline performance.	10	L2	
		5 6			
		2 of 2			