

Third Semester B.E./B.Tech. Degree Examination, Dec.2024/Jan.2025 Data Structures and Applications

Time: 3 hrs.

5

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. M : Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	Μ	L	C			
Q.1	a.	Define Data Structures. Explain the classification of data structures with a neat diagram.	8	L2	CO1			
	b.	Write a C Functions to implement pop, push and display operations for stacks using assays.	7	L2	CO2			
	c.	Differentiate structures and unions.	5	L2	CO1			
OR								
Q.2	a.	Write an algorithm to evaluate a postfix expression and apply the same for the given postfix expression. 62/3-42*+.	7	L3	CO2			
	b.	Explain the dynamic memory allocation function in detail.	8	L2	CO1			
	c.	What is Sparse matrix? Give the triplet form of a given matrix and find its transpose $A = \begin{bmatrix} 0 & 0 & 3 & 0 & 4 \\ 0 & 0 & 5 & 7 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 6 & 0 & 0 \end{bmatrix}$	5	L3	CO1			
		Module – 2						
Q.3	a.	Define Queue. Discuss how to represent a queue using dynamic assays.	8	L2	CO2			
	b.	Write a C Function to implement insertion (), deletion () and display () operations on circular queue.	6	L3	CO2			
	c	Write a note on Multiple stacks and queues with suitable diagram.	6	L2	CO2			
	~	OR OR						
Q.4	a.	What is a linked list? Explain the different types of linked list with neat diagram.	6	L2	CO3			
	b.	 Write a C function for the following on singly linked list with example : i) Insert a node of the beginning ii) Delete a node at the front iii) Display. 	8	L3	CO3			
	c.	Write the C function to add two polynomials.	6	L2	CO3			

BCS304

Par

		Module – 3			
Q.5	a.	Discuss how binary trees are represented using : i) Assay ii) Linked list.	6	L2	CO4
	b.	Define Threaded binary tree. Discuss In – threaded binary tree.	6	L2	CO4
	c.	 Write the C function for the following additional list operation : i) Inverting Singly linked list ii) Concatenating Singly linked list. 	8	L3	CO3
		OR			
Q.6	a.	Discuss Inorder, Preorder, Postorder and Level order traversal with suitable function for each.	8	L3	CO4
	b.	Define the threaded binary tree. Construct threaded binary tree for the following element : A, B, C, D, E, F, G, H, I.	6	L2	CO4
	c.	 Write a C function for the following : i) Insert a node at the beginning of doubly linked list. ii) Deleting a node at the end of the doubly linked list. 	6	L3	CO3
		Module – 4	0	7.4	COF
Q.7	a.	Define Forest, Transform the forest into a binary tree and traverse using inorder, preorder and postorder traversal with an example.	8	L1	CO5
	b.	Define Binary search tree. Construct a binary search tree for the following elements : 100, 85, 45, 55, 120, 20, 70, 90, 115, 65, 130, 145.	6	L2	CO5
	c.	Discuss Selection tree with an example.	6	L2	CO5
		OR OR			
Q.8	a.	Define Graph. Explain adjacency matrix and adjacency list representation with an example.	8	L2	CO5
	b.	Define the following terminology with example : i) Digraph ii) Weighted graph iii) Self loop iv) Connected graph.	6	L2	CO5
	c.	Briefly explain about Elementary graph operations.	6	L3	CO5
		Module – 5			005
Q.9	a.	Explain in detail about Static and Dynamic Hashing.	6	L2	CO5
	b.	What is Collision? What are the methods to resolve collision?	7	L2	CO5
	c.	Explain Priority queue with the help of an examples.	7	L2	CO5
		OR			00
Q.10	a.	Define Hashing. Explain different hashing functions with suitable examples.	12	L2	CO5
	b.	Write short note on : i) Leftist trees ii) Optimal binary search tree.	8	L3	CO5
	1	***** 2 of 2			
		S			
	~				