

USN 18CS32

Third Semester B.E. Degree Examination, Dec.2024/Jan.2025 Data Structures and Applications

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. Illustrate the difference between linear and non linear data structure with an example.
 - b. Write the functions to compare and concatenate strings. What are the equivalent library functions? (08 Marks)
 - c. Illustrate with a diagram 2 d array of 3 rows and 4 columns in row major order. Write a function to print row and column index of a given number N. (08 Marks)

OR

- 2 a. Write the type definition for an element as triplets in a sparse matrix. What is the advantage? (04 Marks)
 - b. With a diagram, illustrate representation of the polynomial $A(x) = a_0 + a_1 x^1 + a_2 x^2 + ... + a_n x^n$. Write a program to construct the polynomial.
 - c. Implement C program to match all occurrence of pattern 'P' in text 'T'. (08 Marks)

Module-2

- a. Write a recursive function to compute gcd of two numbers. (04 Marks)
 - b. Write a program to implement the stack operations using dynamic array. (08 Marks)
 - c. Convert $a * x ^ 2 + b * x + C$ into post fix expression using stack. (08 Marks)

OF

4 a. Write a recursive function for Ackermann function A(m, n).

$$A(m, n) = \begin{cases} n+1 & \text{if} \quad m = 0 \\ A(m-1, 1) & \text{if} \quad m \neq 0 \text{ but } n = 0 \\ A(m-1, A(m, n-1)) & \text{if} \quad m \neq 0 \& n \neq 0 \end{cases}$$
 (04 Marks)

- b. Write a program to implement queue operations for the circular queue. (08 Marks)
- c. Evaluate postfix expression ab + cd + *2 /, when a = b = c and c = d = 4 using stack.

 (08 Marks)

Module-3

- 5 a. Describe the dynamic memory allocation and free functions. (04 Marks)
 - b. Write a program to create linked list for the polynomial $1 + 2x + 3x^2 + + nx^{n-1}$. (08 Marks)
 - c. Write a program to implement stack operations using linked list. (08 Marks)

OR

6	a.	Define self referential structure for integer data and allocate the memory require	red by the
		Structure.	(04 Marks)
	b.	Given a linked list of characters (data field) 'A', 'B' and 'C'. Write a function to	(08 Marks)
		1) Illiseit A between A and B	(08 Marks)
	c.	Write a program to implement queue operations using linked list.	(UO MIAIKS)
Module-4			
7	a.		(04 Marks)
,	b.	Draw an expression tree for $((a+(b*((c-d)/e)))+f)$.	(08 Marks)
	c.	Write a function to insert an item into a binary search tree without duplications.	(08 Marks)
	٥.		
OR			
8	a.	Explain strictly binary tree and complete binary tree with examples for each.	(04 Marks)
	b.	Given pre – order sequence 1, 2, 4, 3, 5, 7, 8, 6 and inorder sequence 4, 2, 1, 7, 5, 8	3, 3, 6.
		Construct a corresponding BST.	(08 Marks)
	c.	Illustrate depth of the tree with an example. Write a function to find the depth of the	ne tree.
			(08 Marks)
		Module-5	(0.4 N/L1)
9	a.	With an example, describe two representations of the graph.	(04 Marks)
	b.	Explain graph traversal methods. Write a program for depth first search.	(08 Marks)
	c.	Describe the types, attributes and operations.	(08 Marks)
		OR	(04 Marks)
10	a.	Describe hash table including collision and overflows.	
	b.	Write an algorithm for insertion sort. Apply insertion sort showing various passes	(08 Marks)
		array $A = [2, 1, 6, 5, 4, 3]$.	(08 Marks)
	c.	What is a file? Describe sequential and index sequential file organizations.	(00 Marks)

* * * * *