MAKE-UP EXAM | |
<u> </u> | T | | | | | |-----|--------------|---|--|--|--|--| | USN | | | | | | | BMATM201 ## Second Semester B.E./B.Tech. Degree Examination, Nov./Dec. 2023 Mathematics – II for Mechanical Engineering Stream Time: 3 hrs. Max. Marks: 100 Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. VTU Formula Hand Book is permitted. 3. M: Marks, L: Bloom's level, C: Course outcomes. | | * | Module – 1 | M | L | С | |--------|----|--|---|----|-----| | Q.1 | a. | Evaluate $\int_{0}^{1} \int_{x}^{\sqrt{x}} (x^2 + y^2) dy dx$. | 6 | L3 | CO1 | | | b. | Evaluate $\int_{0}^{\infty} \int_{x}^{\infty} \frac{e^{-y}}{y} dx dy$ by changing the order of the integration. | 7 | L3 | CO1 | | | c. | Show that $\sqrt{(1/2)} = \sqrt{\pi}$. | 7 | L2 | CO1 | | | | OR | | | | | Q.2 | a. | Evaluate $\int_{0}^{a} \int_{0}^{a} \int_{0}^{a} (x^2 + y^2 + z^2) dx dy dz$. | 6 | L3 | CO1 | | -5 | b. | Evaluate $\int_{-a}^{a} \int_{0}^{\sqrt{a^2-x^2}} (\sqrt{x^2+y^2}) dy dx$. By changing into polar coordinates. | 7 | L3 | CO1 | | | c. | Write a mathematical tool program to find the volume of the tetrahedron | 7 | L3 | CO5 | | | | bounded by the planes $x = 0$, $y = 0$ and $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$. | | | | | | | Module – 2
Find the angle between the surfaces $x^2 + y^2 - z^2 = 4$ and $z = x^2 + y^2 - 13$ at | | | | | Q.3 | a. | Find the angle between the surfaces $x^2 + y^2 - z^2 = 4$ and $z = x^2 + y^2 - 13$ at $(2, 1, 2)$. | 6 | L2 | CO2 | | | b. | Find the constants a, b and c such that the vector $\vec{F} = (x + y + az)i + (bx + 2y - z)j + (x + cy + 2z)k$ is irrotational. | 7 | L2 | CO2 | | | c. | Find div \vec{F} and curl \vec{F} . Where $\vec{F} = \text{grad} (x^3 + y^3 + z^3 - 3xyz)$ at $(1, 1, 1)$. | 7 | L2 | CO2 | | (0 0 1 | | OR | | , | E 9 | | Q.4 | a. | Using Greens theorem, evaluate $\oint_C (3x^2 - 8y^2) dx + (4y - 6xy) dy$, where c is the closed curve of the region bounded by $y = \sqrt{x}$ and $y = x^2$. | 6 | L3 | CO2 | | > | b. | Use Stokes Theorem to evaluate $\int_{c} \vec{F} \cdot d\vec{r}$, where $\vec{F} = (x^2 + y^2)i - 2xyj$ and c is bounded by the lines $x = \pm a$, $y = 0$, $y = b$. | 7 | L3 | CO2 | | | c. | Write the modern mathematical tool program to find the curl of vector field. $\vec{F} = x^2yzi + y^2zxj + z^2xyk$. | 7 | L3 | CO5 | | | 1 | Module – 3 | | l | | | Q.5 | a. | Form the partial differential equation by eliminating the arbitrary constants from the relation $(x - a)^2 + (y - b)^2 + z^2 = 4$. | 6 | L2 | CO3 | | ÷ | | | | | | | | | | BM | [ATI | M201 | |------|----|--|-----|------|------| | | b. | Solve $\frac{\partial^2 z}{\partial y^2} = z$ given that $y = 0$, $z = e^x$ and $\frac{\partial z}{\partial y} = e^{-x}$. | 7 | L3 | CO3 | | | c. | Solve: $x^2(y-z) p + y^2 (z-x)q = z^2(x-y)$ using Lagrange's multipliers. | 7 | L3 | CO3 | | 0.6 | | OR | 6 | L2 | CO3 | | Q.6 | a. | Form the partial differential equation by eliminating the arbitrary function from $\phi(x^2 + y^2 + z^2, xyz) = 0$. | O | LZ | COS | | | b. | Solve $\frac{\partial^2 z}{\partial x \partial y} = \frac{x}{y}$, given that $\frac{\partial z}{\partial x} = \log x$ when $y = 1$ and $z = 0$ when $x = 1$. | 7 | L3 | CO3 | | | c. | Derive one dimensional wave equation. | 7 | L2 | CO3 | | | | Module – 4 | , | , | | | Q.7 | a. | Find an approximate value of the root of the equation $xe^x = 2$ in the interval (0.5, 1) using Regula-Falsi method correct to 4-decimal places carryout 4 iterations. | 6 | L3 | CO4 | | | b. | Using Newton's backward interpolation formula find y at $x = 5.2$ for the data. x x x x | 7 | L3 | CO4 | | | | y 10 26 58 112 194 | | | | | | | [7] 10 20 00 1.2 1.2 | - | | 604 | | | c. | Evaluate $\int_{0}^{1} \frac{1}{1+x^2} dx$ by using Simpson's $1/3^{rd}$ rule by taking 7 ordinates. | 7 | L3 | CO4 | | | | OR | T - | T | 604 | | Q.8 | a. | Find the real root of the equation $Tanx = x$ near $x = 4.5$ by Newton's – Raphson method correct to 4-decimal places. | 6 | L3 | CO4 | | | b. | Using Newton's divided difference formula find f(5) from the following data: x 0 2 3 4 7 9 9 9 4 26 58 112 466 922 928 92 | 7 | L3 | CO4 | | | c. | Evaluate $\int_{4}^{5.2} (\log x) dx$ by using Trapezoidal rule by taking 7 ordinates. | 7 | L3 | CO4 | | | | Module – 5 | | | | | Q.9 | a. | Using Taylors series method to solve $\frac{dy}{dx} = (x + y)$ with $y(1) = 0$ at the points $x = 1.1$ and 1.2 upto 4 th approximation. | 6 | L2 | CO4 | | | b. | Using Runge-Kutta method of fourth order find y(0.2) given that $\frac{dy}{dx} = (x + y^2); y(0) = 1 \text{ Taking } h = 0.2.$ | 7 | L3 | CO4 | | | c. | Using modified Euler's method find y at $x = 0.2$ given that | 7 | L3 | CO4 | | | | $\frac{dy}{dx} = 3x + \frac{y}{2}$; y(0) = 1 taking h = 0.1. Carryout 3-modification in each step. | | | | | | 1/ | OR | | 1 | 1 | | Q.10 | a. | Using Runge-Kutta method of fourth order find y(0.1) given that $\frac{dy}{dx} = 3e^x + 2y$, with y(0) = 0 taking h = 0.1. | 6 | L3 | CO4 | | | b. | dx Given $\frac{dy}{dx} = (x - y^2)$ and the data $y(0) = 0$, $y(0.2) = 0.02$, $y(0.4) = 0.0795$, | 7 | L3 | CO4 | | | | $\frac{dx}{dx} = (x - y)$ and the data $y(0) = 0$, $y(0.2) = 0.02$, $y(0.4) = 0.0753$, $y(0.6) = 0.1762$ compute $y(0.8)$ by Milne's method. | | | | | | c. | Using mathematical tools write a code to find the solution of $\frac{dy}{dx} = \left(1 + \frac{y}{x}\right)$ | 7 | L3 | CO5 | | b | , | at y(2) taking $h = 0.2$ given that y(1) = 2 by Runge-Kutta method. | | | | * * * 2 of 2* * *