MAKE-UP EXAM

	 <u> </u>	T				
USN						

BMATM201

Second Semester B.E./B.Tech. Degree Examination, Nov./Dec. 2023 Mathematics – II for Mechanical Engineering Stream

Time: 3 hrs. Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. VTU Formula Hand Book is permitted.

3. M: Marks, L: Bloom's level, C: Course outcomes.

	*	Module – 1	M	L	С
Q.1	a.	Evaluate $\int_{0}^{1} \int_{x}^{\sqrt{x}} (x^2 + y^2) dy dx$.	6	L3	CO1
	b.	Evaluate $\int_{0}^{\infty} \int_{x}^{\infty} \frac{e^{-y}}{y} dx dy$ by changing the order of the integration.	7	L3	CO1
	c.	Show that $\sqrt{(1/2)} = \sqrt{\pi}$.	7	L2	CO1
		OR			
Q.2	a.	Evaluate $\int_{0}^{a} \int_{0}^{a} \int_{0}^{a} (x^2 + y^2 + z^2) dx dy dz$.	6	L3	CO1
-5	b.	Evaluate $\int_{-a}^{a} \int_{0}^{\sqrt{a^2-x^2}} (\sqrt{x^2+y^2}) dy dx$. By changing into polar coordinates.	7	L3	CO1
	c.	Write a mathematical tool program to find the volume of the tetrahedron	7	L3	CO5
		bounded by the planes $x = 0$, $y = 0$ and $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$.			
		Module – 2 Find the angle between the surfaces $x^2 + y^2 - z^2 = 4$ and $z = x^2 + y^2 - 13$ at			
Q.3	a.	Find the angle between the surfaces $x^2 + y^2 - z^2 = 4$ and $z = x^2 + y^2 - 13$ at $(2, 1, 2)$.	6	L2	CO2
	b.	Find the constants a, b and c such that the vector $\vec{F} = (x + y + az)i + (bx + 2y - z)j + (x + cy + 2z)k$ is irrotational.	7	L2	CO2
	c.	Find div \vec{F} and curl \vec{F} . Where $\vec{F} = \text{grad} (x^3 + y^3 + z^3 - 3xyz)$ at $(1, 1, 1)$.	7	L2	CO2
(0 0 1		OR		,	E 9
Q.4	a.	Using Greens theorem, evaluate $\oint_C (3x^2 - 8y^2) dx + (4y - 6xy) dy$, where c is the closed curve of the region bounded by $y = \sqrt{x}$ and $y = x^2$.	6	L3	CO2
>	b.	Use Stokes Theorem to evaluate $\int_{c} \vec{F} \cdot d\vec{r}$, where $\vec{F} = (x^2 + y^2)i - 2xyj$ and c is bounded by the lines $x = \pm a$, $y = 0$, $y = b$.	7	L3	CO2
	c.	Write the modern mathematical tool program to find the curl of vector field. $\vec{F} = x^2yzi + y^2zxj + z^2xyk$.	7	L3	CO5
	1	Module – 3		l	
Q.5	a.	Form the partial differential equation by eliminating the arbitrary constants from the relation $(x - a)^2 + (y - b)^2 + z^2 = 4$.	6	L2	CO3
÷					

			BM	[ATI	M201
	b.	Solve $\frac{\partial^2 z}{\partial y^2} = z$ given that $y = 0$, $z = e^x$ and $\frac{\partial z}{\partial y} = e^{-x}$.	7	L3	CO3
	c.	Solve: $x^2(y-z) p + y^2 (z-x)q = z^2(x-y)$ using Lagrange's multipliers.	7	L3	CO3
0.6		OR	6	L2	CO3
Q.6	a.	Form the partial differential equation by eliminating the arbitrary function from $\phi(x^2 + y^2 + z^2, xyz) = 0$.	O	LZ	COS
	b.	Solve $\frac{\partial^2 z}{\partial x \partial y} = \frac{x}{y}$, given that $\frac{\partial z}{\partial x} = \log x$ when $y = 1$ and $z = 0$ when $x = 1$.	7	L3	CO3
	c.	Derive one dimensional wave equation.	7	L2	CO3
		Module – 4	,	,	
Q.7	a.	Find an approximate value of the root of the equation $xe^x = 2$ in the interval (0.5, 1) using Regula-Falsi method correct to 4-decimal places carryout 4 iterations.	6	L3	CO4
	b.	Using Newton's backward interpolation formula find y at $x = 5.2$ for the data. x x x x	7	L3	CO4
		y 10 26 58 112 194			
		[7] 10 20 00 1.2 1.2	-		604
	c.	Evaluate $\int_{0}^{1} \frac{1}{1+x^2} dx$ by using Simpson's $1/3^{rd}$ rule by taking 7 ordinates.	7	L3	CO4
		OR	T -	T	604
Q.8	a.	Find the real root of the equation $Tanx = x$ near $x = 4.5$ by Newton's – Raphson method correct to 4-decimal places.	6	L3	CO4
	b.	Using Newton's divided difference formula find f(5) from the following data: x 0 2 3 4 7 9 9 9 4 26 58 112 466 922 928 92	7	L3	CO4
	c.	Evaluate $\int_{4}^{5.2} (\log x) dx$ by using Trapezoidal rule by taking 7 ordinates.	7	L3	CO4
		Module – 5			
Q.9	a.	Using Taylors series method to solve $\frac{dy}{dx} = (x + y)$ with $y(1) = 0$ at the points $x = 1.1$ and 1.2 upto 4 th approximation.	6	L2	CO4
	b.	Using Runge-Kutta method of fourth order find y(0.2) given that $\frac{dy}{dx} = (x + y^2); y(0) = 1 \text{ Taking } h = 0.2.$	7	L3	CO4
	c.	Using modified Euler's method find y at $x = 0.2$ given that	7	L3	CO4
		$\frac{dy}{dx} = 3x + \frac{y}{2}$; y(0) = 1 taking h = 0.1. Carryout 3-modification in each step.			
	1/	OR		1	1
Q.10	a.	Using Runge-Kutta method of fourth order find y(0.1) given that $\frac{dy}{dx} = 3e^x + 2y$, with y(0) = 0 taking h = 0.1.	6	L3	CO4
	b.	dx Given $\frac{dy}{dx} = (x - y^2)$ and the data $y(0) = 0$, $y(0.2) = 0.02$, $y(0.4) = 0.0795$,	7	L3	CO4
		$\frac{dx}{dx} = (x - y)$ and the data $y(0) = 0$, $y(0.2) = 0.02$, $y(0.4) = 0.0753$, $y(0.6) = 0.1762$ compute $y(0.8)$ by Milne's method.			
	c.	Using mathematical tools write a code to find the solution of $\frac{dy}{dx} = \left(1 + \frac{y}{x}\right)$	7	L3	CO5
b	,	at y(2) taking $h = 0.2$ given that y(1) = 2 by Runge-Kutta method.			

* * * 2 of 2* * *