

Fifth Semester B.E./B.Tech. Degree Examination, Dec.2024/Jan.2025 Computer Vision

la

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. M : Marks , L: Bloom's level , C: Course outcomes.

		Module – 1	Μ	L	С
Q.1	a.	What is Compute Vision? Why is vision so difficult? Discuss the real -	10	L1	CO1
		world examples of computer vision.			
	b.	Explain the behavior of pinhole camera under different effects using a clear	10	L2	CO1
		illustration to show the real-world example.			
14		OR			,
Q.2	a.	Explain the phong shading model.	8	L2	CO1
	b.	Explain the Di-chromatic reflectance model.	5	L2	CO1
	c.	What is meant by image filtering? Clearly discuss types of filter.	7	L1	CO1
		Module – 2			
Q.3	a.	Differentiate between a linear spatial filter and a non-linear spatial filter.	10	L2	CO2
		Explain why bilateral filtering is quite show compared to regular separable			
		filtering.			
*	b.	Explain the binary image processing. Obtain the distance transform D(i, j)	10	L2	CO2
		of a binary image B(i, j).			
				L	
		OR			000
Q.4	a.	Explain the derivation of Discrete Fourier Transform (DFT) form the	10	L2	CO2
		continuous transform of the sampled function.	10		600
	b.	What are the geometric transformation? Explain the forward warping	10	L1	CO3
		algorithm for transforming an image.			
0.5	1	Module – 3	10	T 1	CO2
Q.5	a.	Give the probability density functions for Gaussion noise model and	10	L1	CO3
	1	Rayleigh noise models.	10	L1	CO3
	b.	Discuss the noise reduction capabilities of the following spatial filters : i) Arithmetic mean filter	10		COS
		ii) Geometric mean filter.			
		OR			
04		Explain the image gradient and its properties.	10	L2	CO3
Q.6	a.	Explain the following gradient operators :	10	L2	CO3
	b.	i) Roberts cross – gradient operators			
		i) Sobel operator			
		iii) Prewitt operator			
		iv) Laplacian operator.			
		iv) Exploration operator.			
	1	1 of 2		L	

Q. 7	a.	Module – 4 Define the pseudocolor processing of digital images. Explain the graphical	10	L2	CO4
~ • <i>'</i>		interpretation of the intensity slicing technique.			
	b.	Discuss the procedure for conversion from RGB color model to HIS color model.	10	L2	CO4
		OR			
0.0	0	Illustrate how full-color images are handled for a variety of image	10	L2	CO4
Q.8	a.	processing tasks.	10		
	b.	Explain the color image smoothing and sharpening procedure.	10	L2	CO4
		Module – 5			
Q.9	a.	Explain how morphological operations are performed between images and structuring elements.	10	L2	CO5
	b.	Write short notes on the following :	10	L2	C05
		i) Erosin			
		ii) Dialation.	Ĩ.		
		OR			1
Q.10	a.	Explain the procedures in the "boundary following" algorithm that traces the boundary in binary image.	10	L2	C05
	b.	What is Pattern Classification? Explain the minimum distance classifier.	10	L2	C05

Standard Standard