Fifth Semester B.E./B.Tech. Degree Examination, Dec.2024/Jan.2025 **Aircraft Structures**

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. M: Marks, L: Bloom's level, C: Course outcomes.

	Module – 1	M	L	C
a.	Define: static strength, biaxial stress, stress tensor, principal stress and factor of safety.	10	L1	CO1
b.	Explain: i) Design considerations ii) Codes and standards.	10	L1	CO1
	OR	-		
a.	Explain any two theories of failure applicable for ductile materials.	8	L1	CO1
b.	The load on a bolt consists of an axial pull of 10 kN together with a transverse shear force of 5 kN. Find the diameter of the bolt according to i) Max principal stress theory ii) Max shear stress iii) Max principal strain iv) Max strain energy v) Max distortion energy theory. Take permissible tensile stress at elastic limit = 100 MPa and μ = 0.3.	12	1.3	CO1
	Module – 2			
a.	What is Impact stress? Derive an equation for impact factor of a bar subjected to an axial impact load.	10	L2	CO2
b.	Define: Fatigue, stress concentration, miners rule, fluctuating stress and repeated stress.	10	L2	CO2
	OR			
a.	Draw a SN diagram. Explain endurance strength and mention the factors on which it depends.	10	L2	CO2
b.	Determine the maximum load which can be withstood by the beam as shown in Fig.Q.4(b) for an indefinite life based on Goodman and Soderberg criteria. Use a factor of safety as 2. Theoretical stress concentration factor is 1.42 and notch sensitivity is 0.9. Assume the following values. Ultimate stress = 550 MPa, yield stress = 470 MPa, Endurance limit = 275 Mpa, size factor = 0.85 surface finish factor = 0.89.	10	1.3	CO2
	a. b. a. b.	 a. Define: static strength, biaxial stress, stress tensor, principal stress and factor of safety. b. Explain: i) Design considerations ii) Codes and standards. OR a. Explain any two theories of failure applicable for ductile materials. b. The load on a bolt consists of an axial pull of 10 kN together with a transverse shear force of 5 kN. Find the diameter of the bolt according to i) Max principal stress theory ii) Max shear stress iii) Max principal stress iii) Max principal strain iv) Max strain energy v) Max distortion energy theory. Take permissible tensile stress at elastic limit = 100 MPa and μ = 0.3. Module - 2 a. What is Impact stress? Derive an equation for impact factor of a bar subjected to an axial impact load. b. Define: Fatigue, stress concentration, miners rule, fluctuating stress and repeated stress. OR a. Draw a SN diagram. Explain endurance strength and mention the factors on which it depends. b. Determine the maximum load which can be withstood by the beam as shown in Fig. Q.4(b) for an indefinite life based on Goodman and Soderberg criteria. Use a factor of safety as 2. Theoretical stress concentration factor is 1.42 and notch sensitivity is 0.9. Assume the following values. Ultimate stress = 550 MPa, yield stress = 470 MPa, Endurance limit = 275 Mpa, size factor = 0.85 surface finish factor = 0.89. 	 a. Define: static strength, biaxial stress, stress tensor, principal stress and factor of safety. b. Explain: i) Design considerations ii) Codes and standards. 10 OR a. Explain any two theories of failure applicable for ductile materials. b. The load on a bolt consists of an axial pull of 10 kN together with a transverse shear force of 5 kN. Find the diameter of the bolt according to i) Max principal stress theory ii) Max shear stress iii) Max principal strain iv) Max strain energy v) Max distortion energy theory. Take permissible tensile stress at elastic limit = 100 MPa and μ = 0.3. Module - 2 a. What is Impact stress? Derive an equation for impact factor of a bar subjected to an axial impact load. b. Define: Fatigue, stress concentration, miners rule, fluctuating stress and repeated stress. OR a. Draw a SN diagram. Explain endurance strength and mention the factors on which it depends. b. Determine the maximum load which can be withstood by the beam as shown in Fig.Q.4(b) for an indefinite life based on Goodman and Soderberg criteria. Use a factor of safety as 2. Theoretical stress concentration factor is 1.42 and notch sensitivity is 0.9. Assume the following values. Ultimate stress = 550 MPa, yield stress = 470 MPa, Endurance limit = 275 Mpa, size factor = 0.85 surface finish factor = 0.89. 	 a. Define: static strength, biaxial stress, stress tensor, principal stress and factor of safety. b. Explain: i) Design considerations ii) Codes and standards. 10 L1 OR a. Explain any two theories of failure applicable for ductile materials. b. The load on a bolt consists of an axial pull of 10 kN together with a transverse shear force of 5 kN. Find the diameter of the bolt according to i) Max principal stress theory ii) Max shear stress iii) Max principal strain iv) Max strain energy v) Max distortion energy theory. Take permissible tensile stress at elastic limit = 100 MPa and μ = 0.3. Module - 2 a. What is Impact stress? Derive an equation for impact factor of a bar subjected to an axial impact load. b. Define: Fatigue, stress concentration, miners rule, fluctuating stress and repeated stress. OR a. Draw a SN diagram. Explain endurance strength and mention the factors on which it depends. b. Determine the maximum load which can be withstood by the beam as shown in Fig. Q.4(b) for an indefinite life based on Goodman and Soderberg criteria. Use a factor of safety as 2. Theoretical stress concentration factor is 1.42 and notch sensitivity is 0.9. Assume the following values. Ultimate stress = 550 MPa, yield stress = 470 MPa, Endurance limit = 275 Mpa, size factor = 0.85 surface finish factor = 0.89.

			BAE502					
Module – 5								
Q.9	a.	Derive an equation for direct stress due to bending in an unsymmetrical section.	8	L2	CO3			
	b.	The I section beam with flanges 200 mm \times 20 mm and web 260 mm \times 25 mm is subjected to a bending moment of 100 KNm applied in a plane parallel to the longitudinal axis of the beam but inclined at 30° to the left of the vertical. The sense of the bending moment is clockwise when viewed from the left hand edge of the beam section. Determine the distribution of stress.	12	L3	CO3			
		O.D.						
0.10	1	OR Determine the horizontal and vertical components of the tip deflection of	8	L3	CO3			
Q.10	a.	the cantilever shown in Fig.Q.10(a) The second moments of area of its unsymmetrical section are I_{XX} , I_{YY} and I_{XY} .						
	b.	A beam having cross section as shown in Fig.Q.10(b) is subjected to bending moment of 1500 Nm in a vertical plane. Calculate the maximum direct stress due to bending stating the point at which it acts. **Tombac Somm** **Fig.Q.10(b)	12	L3	CO3			