CBCS SCHEME

USN				
-----	--	--	--	--

BMATS201

Second Semester B.E./B.Tech. Degree Examination, June/July 2023 Mathematics – II for CSE Stream

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. VTU Formula Hand Book is permitted.

3. M: Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	M	L	C
Q.1	a.	Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} \int_{0}^{\sqrt{1-x^2-y^2}} xyz dz dy dx.$	7	L2	CO1
	b.	Evaluate by changing the order of integration $\int_{0}^{a} \int_{y}^{a} \frac{x}{x^{2} + y^{2}} dxdy$.	7	L3	COI
-	c.	Show that $\beta(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$.	6	L2	CO1
		ÓR			
Q.2	a.	Evaluate $\int_{-2}^{2} \int_{0}^{\sqrt{4-x^2}} (2-x) dy dx$ by changing into polar coordinates.	7	L3	CO1
	b.	A pyramid is bounded by three coordinate planes and the plane $x + 2y + 3z = 6$. Compute the volume by double integration.	7	L3	CO1
	c.	Using Mathematical tools, write the code to find the area of the cardioids $r = a(1 + \cos \theta)$ by double integration.	6	L3	COS
	-	Module – 2	-		
Q.3	a.	Show that the two surfaces $xz + y + z^2 = 9$ and $z = 4 - 4xy$ at $(1, -1, 2)$ are orthogonal.	7	L3	CO2
	b.	If $F = \text{grad}(xy^3z^2)$, find divF and curlF at the point $(1, -1, 1)$.	7	L2	CO2
	c.	Prove that the cylindrical coordinate system is orthogonal.	6	L3	CO2
	pa N	OR			
Q.4	a.	Find the directional derivative of $\phi = x \log z - y^2 + 4$ at (-1, 2, 1) in the direction of the vector $2i - j - 2k$.	7	L2	CO2
70	b.	Find the constants a, b and c such that $F = (axy - z^3)i + (bx^2 + z)j + (bxz^2 + cy)k$ is irrotational.	7	L2	CO2
		Using the Mathematical tools, write the codes to find the gradient of	6	L3	CO5

			D	V12% 1	S201
		Module – 3		, , 1	
Q.5	a.	Let $W = \{(x, y, z) \mid lx + my + nz = 0\}$, then prove that W is a subspace of R^3 .	7	L2	CO3
	b.	Find the basis and the dimension of the subspace spanned by the vectors $\{(2, 4, 2), (1, -1, 0), (1, 2, 1), (0, 3, 1)\}$ in $V_3(R)$.	7	L2	CO3
	c.	Prove that $T: \mathbb{R}^3 \to \mathbb{R}^3$ be defined by $T(x, y, z) = (2x-3y, x+4, 5z)$ is not a linear transformation.	6	L3	CO3
		OR			
Q.6	a.	Show that the matrix $E = \begin{bmatrix} -1 & 7 \\ 8 & -1 \end{bmatrix}$ lies in the sub space span {A, B, C} of vector space M ₂₂ of 2 × 2 matrices, where	7	L2	CO3
		$A = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}, B = \begin{bmatrix} 2 & -3 \\ 0 & 2 \end{bmatrix} \text{ and } C = \begin{bmatrix} 0 & 1 \\ 2 & 0 \end{bmatrix}.$			904
	b.	Verify the Rank-nullity theorem for the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by $T(x,y,z) = (x+2y-z,y+z,x+y-2z)$.	7	L3	CO3
	c.	Define an Inner product space. Consider $f(t) = 4t + 3$, $g(t) = t^2$, the inner	6	L2	CO3
		product $\langle f, t \rangle = \int_0^1 f(t)g(t)dt$. Find $\langle f, g \rangle$ and $\ g\ $.			
0.7			7	L2	CO4
Q.7	a.	between 2 and 3. (Carryout three iterations).			
	b.	From the following table, estimate the number of students who have obtained the marks between 40 and 45. Marks $30-40$ $40-50$ $50-60$ $60-70$ $70-80$ Number of students 31 42 51 35 31	7	L2	CO4
	c.	Compute the value of $\int_{0.2}^{1.4} (\sin x - \log x + e^x) dx$ using Simpson's $\frac{3}{8}$ rule taking six parts.	6	L3	CO4
		OR			
Q.8	a.	Using Newton-Raphson method compute the real root of the equation $x \sin x + \cos x = 0$ near $x = \pi$, correct to four decimal places.	7	L2	CO4
	b.	If $y(0) = -12$, $y(1) = 0$, $y(3) = 6$ and $y(4) = 12$, find the Lagrange's interpolation polynomial and estimate $y(2)$.	7	L2	CO4
	c.	Evaluate $\int_{0}^{3} \frac{dx}{4x+5}$ using Trapezoidal rule by taking 7 ordinates.	6	L3	CO4
		Module – 5			1
Q.9	a.	Employ Taylor's series method to obtain $y(0.1)$ for $\frac{dy}{dx} = 2y + 3e^x$, $y(0) = 0$ considering upto 4 th degree terms.	7	L2	CO4
	b.	Using Runge-Kutta method of fourth order, solve $y' = \log_{10} \left[\frac{y}{1-x} \right]$ given	7	L3	CO ₄
		y(0) = 1 at $x = 0.2$			
-		2 of 3*			3
	18				

				BMATS201			
	c.	Solve $\frac{dy}{dx} = 2e^x - y$, $y(0) = 2$, $y(0.1) = 2.010$, $y(0.2) = 2.040$, $y(0.3) = 2.090$, find $y(0.4)$ using Milne's method.	6	L2	CO4		
		OR					
Q.10	a.	Given $\frac{dy}{dx} = x + \sqrt{y} $, $y(0) = 1$. Compute $y(0.4)$ with $h = 0.2$ using Euler's modified method. Perform two modifications in each stage.	7	L2	CO4		
	b.	Apply Milne's predictor-corrector formulae to compute y(4.5), given that $5x \frac{dy}{dx} = 2 - y^2 \text{ and}$ $\begin{array}{ c c c c c c c c c c c c c c c c c c c$	7	L2	CO4		
81	c.	Using modern mathematical tools, write the code to find the solution of $\frac{dy}{dx} = x - y^2$ at y(0.2). Given that y(0) = 1 by Runge-Kutta 4 th order method. (Take h = 0.2)	6	L3	COS		
	(and		ie.	er G			