USN CBCS SCHEME

BESCK104C

First Semester B.E/B.Tech. Degree Examination, Dec.2024/Jan.2025 Introduction to Electronics and Communication

Time: 3 hrs.

Max. Marks:100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. M : Marks, L: Bloom's level, C: Course outcomes.

3.	V1	^{r}U	formula	Handbook	is	permitted.
5.	r 1	U	jormutu	manuooon	13	permueu

		Module – 1	Μ	L	C
1	a.	With a neat block diagram, explain the DC power supply.	6	L2	CO1
	b.	With a circuit diagram explain the working of voltage doubler.	6	L2	CO1
	c.	With circuit diagram and waveforms, explain the working of Bi – Phase full wave rectifier.	8	L2	CO1
	1	OR			
2	a.	Draw the circuit of Zener diode voltage regulator and explain the working.			CO1
	b.	What is multistage amplifier? Show that the overall gain of multistage amplifier is product of individual stage gains.	6	L3	CO1
	c.	What are the advantages of negative feedback? Derive an expression for overall voltage gain of negative feedback amplifier.	8	L3	CO1
		Module – 2			
3	a.	State and explain conditions for oscillations (Barkhausen criterion).	6	L1	CO2
	b.	With circuit diagram, explain the working Wein Bridge Oscillator.	6	L2	CO2
	с.	With circuit diagram and waveforms, explain the working of single stage astable mutlivibrator circuit using op-amp.	8	L2	CO2
		OR		1	
4	a.	List the ideal characteristics of op-Amp.	6	L1	CO2
	b.	Explain the following parameters of the op-Amp. i) Slew Rate ii) Input offset voltage iii) CMRR.	6	L1	CO2
	c.	How op-Amp can be used as an integrator with necessary output equation and waveforms.	8	L2	CO2
		Module – 3			
5	a.	i) Convert $(256.45)_{10} = (?)_2 = (?)_{16}$ ii) Find x if $(211)_x = (152)_8$ iii) Convert $(357.14)_8 = (?)_{16}$.	8	L3	CO3
	b.	Subtract $(1010.11)_2$ from $(1001.10)_2$ using 1's and 2's complement methods.	6	L3	CO3
	c.	State and prove DeMorgan's theorems for 3 input variables.	6	L2	CO3
		1 of 2		I	

			BESCK104C		
		OR			
6	a.	Simplify the following Boolean expressions :	6	L4	CO
		i) $f_1 = \overline{x} \overline{y} + xy + \overline{x}y$			
		ii) $f_2 = x \oplus y \oplus z$.			
			-	1.0	CO
	b.	Obtain canonical forms of the following Boolean expressions [SoP form].	6	L3	CO
		i) $f = a + bc$			
		ii) $f = xy + \overline{x}z$.			
	C.	Design full adder circuit using basic gates.	8	L3	CO
		Module – 4			
7	a.	Define embedded system. Differentiate between embedded systems and	6	L1	CO
		general purpose computing system.			
_	b.	Draw the block diagram of embedded system and explain the different	6	L2	CO
		elements.			
	c.	Differentiate between :	8	L1	CO
		i) Microprocessor Vs Microcontroller			
		ii) RISC Vs CISC.			
0		OR Draw the block diagram of instrumentation system and explain.	8	L2	CO
8	a.		8	L2	CO
	b.	What is seven segment display? Explain the types of seven segment display.		L2 L2	CO
	c.	What are sensors and Actuators?	4	LZ	
0		Module – 5	6	L2	CO
9	a.	With a neat diagram, explain modern communication system.			
	b.	Define modulation and explain amplitude modulation with waveforms.	6	L2	CO
	c.	With waveforms, explain ASK, FSK and SPK modulation techniques.	8	L2	CO
10		OR Explain different modes of radio wave propagation.	8	L1	CO
10	a.				
	b.	What is multiplexing? Explain different types of multiplexing in communication system.	8	L2	CC
	c.	Explain the advantages of digital communication over analog communication.	4	L1	CC

		2 of 2 .			