

First/Second Semester B.E./B.Tech. Degree Examination, Dec.2024/Jan.2025

CBCS SCHEME

Elements of Electrical Engineering

Time: 3 hrs.

USN

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. VTU Formula Hand Book is permitted.

3. M: Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	Μ	L	С
Q.1	a.	State and explain Kirchoff's law as applied to D.C. circuits.	7	L1,	CO1
				L2	
	b.	For a network shown in Fig.Q.1(b), determine:	6	L3	CO1,
		i) The voltage drop in each resistor			CO3
		ii) The current in each resistor.			
		Some Some			
		mm			
		800			
		Fig.Q.1(b)	3		
	c.	State and explain the Ohm's law. Mention its limitations.	7	L1,	CO1
			2	L2	
		OR S			
Q.2	a.	Explain statically and dynamically induced e.m.f.'s.	8	L1,	CO1
				L2	
	b.	Two coupled coils of self-inductances 0.8H and 0.2 H have a co-efficient	6	L3	CO1
		of coupling 0.9. Find the mutual inductance and turns ratio.			
			6	T 1	COL
	c.	Derive the energy stored in the magnetic field.	6	L1, L2	CO1
		Module – 2		14	
Q.3	a.	Define form factor, peak factor obtain its value for a sinusoidal voltage.	6	L1	CO2
Q.5	а.	Denne form racior, peak racior obtain its variae for a sinasonaar vonage.			001
	b.	Derive an expression for power in pure inductance circuit and draw	6	L1,	CO2,
		voltage, current and power waveforms.		L2	CO3
	10				
	c.	In the Fig.Q.3(b) shown below calculate the impedances of AB and the	8	L3	CO2,
		phase angle between voltage and current. Also calculate the total power			CO3
		consumed if the applied voltage between A and B is $200 \angle 30^{\circ}$ volts.			
		82 102			
		- man 22 Sr			
		- C B			
		Jr gr			
		Fig.Q.3(b)			
		1 of 3			

			BEI	LEIU	3/203
		OR			
Q.4	a.	Derive the expression for R.M.S. value of current of a sinusoidally varying quantity.	6	L1, L2	CO2
	b.	Define power factor and mention its practical importance.	7	L1, L2	CO2
	c.	A series circuit with $R = 10 \Omega$, $L = 50 \text{ mH}$ and $C = 100 \mu\text{F}$ is supplied with 200 V, 50 Hz. Find: i) The impedance ii) Current iii) Power iv) Power factor.	7	L3	CO2
		Module – 3			
Q.5	a.	Mention the advantages of three-phase system over single phase system.	5	L2	CO2
	b.	Obtain the relationship between line and phase, voltage and current in a three phase balanced star connected system.	7	L1, L2	CO3 CO2
	c.	A balanced 3-phase, star connected load of 150 kW takes a leading current of 100 A with line voltage of 1100 V, 50 Hz. Find the circuit constants of a load per phase.	8	L3	CO2 CO3
		OR			
Q.6	a.	Show that the two Wattmeter's are sufficient to measure three phase power. Hence derive the expression for the power factor in terms of Wattmeter readings.	8	L1, L2	CO2
	b.	Establish the relationship between the line and phase currents and voltages in a three phase balanced delta connected system.	6	L1, L2	CO2 CO3
	c.	A balanced delta-connected load of $(8 + j6) \Omega$ per phase is supplied from a 3-phase 440 V source. Find line current, power factor, power per phase and total power.	6	L3	CO2 CO3
		Module – 4	L.,		
Q.7	a.	Explain the construction and working of Kelvin's double bridge.	8	L1, L2	CO4
	b.	Explain two way and three way control of lamp with truth table.	6	L1, L2	CO5
	c.	Explain the construction and working of megger.	6	L1, L2	CO5
		OR	1		
Q.8	a.	Mention the difference between the current transformer and potential transformer.	6	L1, L2	CO ²
	b.	Explain the construction of Schering's bridge and derive the expression for the unknown capacitance.	8	L1, L2	CO4
	c.	Write a short note on casing and capping wiring.	6	L1, L2	COS
	_	Module – 5		1	
Q.9	a.	What is electric shock? Give the list of preventive measures against the shock.	6	L1, L2	COS
		2 of 3		1	

			BE	EE10	3/203
	b.	Define tariff. Explain briefly the two part tariff with its advantage and disadvantage.	6	L1, L2	CO5
	c.	What is earthing? With neat diagram, explain pipe earthing.	8	L1, L2	CO5
	1	OR			
Q.10	a.	With neat diagram, explain the working of RCCB and ELCB.	8	L1, L2	CO5
	b.	Write a short note on fuse.	5	L1, L2	CO5
	c.	 In a residential house the following loads are connected : i) Six lamps of 40 W each, switched on for 5 hr a day. ii) Two fans of 60 W each, switched on for 12 hr a day. iii) One 1000 W (1 kW) heater working for 2 hr per day. iv) One refrigerator of 250 W working for 10 hr per day. If each unit of energy costs Rs.1.90 what will be the total cost in the month of September. 	7	L3	CO5