CBCS SCHEME

First Semester M.Tech. Degree Examination, Aug./Sept.2020 Applied Mathematics

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. Explain about, (i) Inherent error (ii) Truncation errors (iii) Round off errors (08 Marks)
 - b. Perform 5 iterations of the bisection method to obtain the smallest positive root of the equation $f(x) = x^3 x 1 = 0$. (07 Marks)
 - c. Find a real root of the equation $x = e^{-x}$ using the Newton-Raphson method. (05 Marks)

OR

- 2 a. Prove that the terminal velocity of the freely falling body parachutist is $V = \frac{gm}{C} \left[1 e^{-(C_m)t} \right]$ in the usual notation. (08 Marks)
 - b. The equation $2x = \log_{10} x + 7$ has a root between 3 and 4. Find this root, correct to 3 decimal places, by Regula-Falsi method. (07 Marks)
 - c. Find a real root of the equation, $x^3 2x 5 = 0$, using Secant method. (05 Marks)

Module-2

- 3 a. Using Muller's method, find the root of the equation $f(x) = x^3 5x + 1 = 0$. (10 Marks)
 - b. Evaluate $\int_{0}^{1} \frac{dx}{1+x}$, correct to 3 decimal places, with h = 0.5, h = 0.25 and h = 0.125 respectively using Trapezoidal rule. (10 Marks)

OR

- 4 a. Evaluate the integral $I = \int_{0}^{1} \frac{2x dx}{1+x^4}$, using the Gauss Legandre's 1-point, 2-point and 3-point quadrature rule. (10 Marks)
 - b. Use Romberg's method to compute $\int_{0}^{1} \frac{dx}{1+x}$ correct to 3 decimal places. (10 Marks)

Module-3

- 5 a. Find the inverse of the coefficient matrix of the system $\begin{bmatrix} 1 & 1 & 1 \\ 4 & 3 & -1 \\ 3 & 5 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 6 \\ 4 \end{bmatrix}$ by Gauss Jordan method. (10 Marks)
 - b. Find the inverse of the matrix $A = \begin{bmatrix} 3 & 2 & 1 \\ 2 & 3 & 2 \\ 1 & 2 & 2 \end{bmatrix}$, 'using Crout's method. (10 Marks)

18MCM/MTR/MAR/IAE11

OR

$$x_1 + 2x_2 + 3x_3 = 5,$$

$$2x_1 + 8x_2 + 22x_3 = 6,$$

$$3x_1 + 22x_2 + 82x_3 = -10$$

Using the Cholesky method.

(10 Marks)

b. Determine the inverse of the matrix
$$\begin{vmatrix} 2 & 1 & 1 & -2 \\ 4 & 0 & 2 & 1 \\ 3 & 2 & 2 & 0 \\ 1 & 3 & 2 & -1 \end{vmatrix}$$
 using partition method. Hence, solve

the system of equations AX= b, where $b = [-10, 8, 7, -5]^T$

(10 Marks)

Module-4

7 a. Using the Jacobi method find all the Eigen values and the corresponding Eigen vectors of

the matrix,
$$A = \begin{bmatrix} 1 & \sqrt{2} & 2 \\ \sqrt{2} & 3 & \sqrt{2} \\ 2 & \sqrt{2} & 1 \end{bmatrix}$$
.

(10 Marks)

b. Transform the matrix $A = \begin{bmatrix} 1 & 2 & 4 \\ 2 & 1 & 2 \\ 4 & 2 & 1 \end{bmatrix}$

to tridiagonal form by Given's method, hence find Eigen values.

(10 Marks)

OR

8 a. Using the Householder's transformation rules reduce the matrix $A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$ into a

tridiagonal matrix.

(10 Marks)

b. Find the largest eigenvalue in modulus and the corresponding Eigen vector of the matrix

$$A = \begin{bmatrix} -15 & 4 & 3 \\ 10 & -12 & 6 \\ 20 & -4 & 2 \end{bmatrix}$$
 using Power method.

(10 Marks)

Module-5

9 a. Find the columns of $I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ are $e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. Suppose T is linear

transformation for \mathbb{R}^2 into \mathbb{R}^3 such that $T(e_1) = \begin{bmatrix} 5 \\ -7 \\ 2 \end{bmatrix}$ and $T(e_2) = \begin{bmatrix} -3 \\ 8 \\ 0 \end{bmatrix}$ with no additional

information. Find a formula for the image of a arbitrary X in \mathbb{R}^2 .

(10 Marks)

b. Let W = span{x₁, x₂}, where $x_1 = \begin{bmatrix} 3 \\ 6 \\ 0 \end{bmatrix}$ and $x_2 = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$. Construct an orthogonal basis $\{V_1, V_2\}$

for W

(10 Marks)

18MCM/MTR/MAR/IAE11

OR

- 10 a. Find a least-squares solution of the inconsistent system AX=b for $A = \begin{bmatrix} 4 & 0 \\ 0 & 2 \\ 1 & 1 \end{bmatrix}$, $b = \begin{bmatrix} 2 \\ 0 \\ 11 \end{bmatrix}$.

 (10 Marks)
 - b. i) Let $u_1 = \begin{bmatrix} 2 \\ 5 \\ -1 \end{bmatrix}$, $u_2 = \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$ and $y = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$. Observe that $\{u_1, u_2\}$ is an orthogonal basis for

W = space $\{u_1, u_2\}$. Write y as the sum of a vector in W and a vector orthogonal to W. (05 Marks)

ii) Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation then there exists a unique matrix A such that T(X)=AX for all x in \mathbb{R}^n , in fact, A is the $m \times n$ matrix whose j^{th} column is the T(ej), where ej is the j^{th} column of the identity matrix $\mathbb{R}^n: A[T(e_1)....T(e_n)]$.

(05 Marks)

3 of 3