JSN							
	1	1		1	1 0		

18ME71

Seventh Semester B.E. Degree Examination, Jan./Feb. 2023 Control Engineering

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. With a block diagram, explain automobile speed closed control system.

(10 Marks)

b. List and explain requirements of an ideal control system.

(10 Marks)

OR

- 2 a. Explain: (i) Proportional controller
- (ii) Derivative controller

(10 Marks)

b. Obtain transfer function for armature controlled D-C motor.

(10 Marks)

Module-2

3 a. Explain typical test signals in control system.

(10 Marks)

b. Determine order and type for open and closed loop control system as shown in Fig.Q3(b).

(10 Marks)

OR

- 4 a. Define:
 - (i) Delay time
- (ii) Rise time
- (iii) Peak time

- (iv) Maximum overshoot
- (v) Setting time

(10 Marks)

b. A unity feedback system is characterized by open loop transfer function $G(s) = \frac{16}{s^2 + 2s + 16}$

Determine the following when the system subjected to unit step input:

- (i) Undamped not usual frequency
- (ii) Damping ratio
- (iii) Peak overshoot

(iv) Peak time

(iv) Settling time

(10 Marks)

(10 Marks)

Module-3

a. Reduce the block diagram as shown in Fig.Q5(a) to simple form and find transfer function:

2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

b. Obtain transfer function of block diagram shown in Fig.Q5(b) by reduction technique.

OR

6 a. For the system shown in Fig.Q6(a), determine $\frac{C(s)}{R(s)}$ using Mason's gain formula.

Fig.Q6(a)

(10 Marks)

b. Using SFG and Mason's gain formula, obtain the overall transfer function of system shown in Fig.Q6(b).

7 a. Applying Routh criterion, discuss the stability of closed loop system as function for open loop transfer function:

 $G(s)H(s) = \frac{K(s+1)}{s(s-1)(s^2+4s+16)}$ (10 Marks)

- b. Investigate the stability of system using Routh Hurwitz criterion having characteristic equation $s^5 + 4s^4 + 12s^3 + 20s^2 + 30s + 100 = 0$ (10 Marks)
- Sketch the root locus for negative feedback system whose open loop transfer function is given by $G(s)H(s) = \frac{K}{s(s+3)(s^2+3s+4.5)}$ (20 Marks)

Module-5

- 9 a. Sketch polar plot for transfer function $G(s) = \frac{10}{s(s+1)(s+2)}$. (10 Marks)
 - b. Open loop function control system $G(s)H(s) = \frac{1}{s^2(s+2)}$, sketch Nyquist plot and ascertain stability. (10 Marks)
- A unity feedback control system has $G(s) = \frac{80}{s(s+2)(s+20)}$. Draw the Bode plot if phase cross over occur at $\omega = 6.35$ rad/sec, find the corresponding gain margin. (20 Marks)