Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. 2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice.

CBCS SCHEME

USN													18ME72
-----	--	--	--	--	--	--	--	--	--	--	--	--	--------

Seventh Semester B.E. Degree Examination, Feb./Mar. 2022 Computer Aided Design and Manufacturing

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Define Automation. Explain different types of automation.

(10 Marks)

- b. The average part produced in a certain batch manufacturing plant must be processed through an average 6 machines. 20 new batches are launched each week. Average operation time is 6 mins average set-up time is 5 hrs, average batch size is 25 parts, average non-operation time per batch is 10 hrs/machine. There are 18 machines in the plant. The plant operates an average of 70 production hours per week. Scrap rate is negligible, determine:
 - (i) Manufacturing Load Time (MLT) for an average part

(ii) Production rate

(iii) Plant capacity

(iv) Plant utilization

(v) WIP

(10 Marks)

OR

2 a. What is buffer storage? Explain types of buffer storage with neat sketch.

(08 Marks)

(04 Marks)

b. Define Upper bound approach and lower bound approach.

For a 10 station transfer line, refer following data: P = 0.01 (all stations have an equal probability of failure)

 $T_c = 0.5 \text{ min},$

 $T_d = 5.0 \text{ min}$

Using upper bound approach, determine:

(i) The frequency of line stop

(ii) The average production rate

(iii)The line efficiency

(08 Marks)

Module-2

3 a. Explain with block diagram, the design process using Computer Aided Design (CAD).

(10 Marks)

b. Explain the different functions of graphics packages.

(10 Marks)

OR

4 a. Explain in detail the Retrieval type of CAPP.

(10 Marks)

b. What is MRP? Explain the different inputs of MRP with block diagram.

(10 Marks)

Module-3

5 a. Briefly explain different types of manufacturing cells.

(10 Marks)

b. What is AS/RS? Explain different types of AS/RS.

(10 Marks)

OR

6 a. By using the given information:

The product demand is 1800 units/week;

The industry works 48 hrs/week;

Number of operators 8; Uptime of assembly is 94%; There is no repositioning required Determine: (i) Line efficiency (ii) Balance delay (iii) Smoothness index, by using largest candidate rule method. The work elements and their times involved in the assembly operation is as below:

Element	71	2	3	4	5	6	7	8
Tek (min)	1.0	0.5	0.8	0.3	1.2 *	0.2	0.5	1.5
Predecessor by	-	-	1, 2	2	3	3,4	4	5, 6, 7

(14 Marks)

b. Define and write the mathematical model of: (i) Total work content time (T_{wc}) (ii) Cycle Time (T_c) (06 Marks) Smoothness Index (SI) Module-4 Explain briefly the steps involved in the development of a part program (10 Marks) 7 List out the advantages, limitations and applications of CNC's. (10 Marks) Explain with neat sketches the different joints used in industrial robots. (10 Marks) b. Write a short note on robot programming methods. (10 Marks) Module-5 Define additive manufacturing systems and list out its advantages, disadvantages and application. (10 Marks) b. With neat sketch, explain sheet lamination type AM process. (10 Marks) Write short notes on: 10 Evolution of industry 4.0 b. Big data and cloud computing for lol Supply chain optimization Cyber physical manufacturing systems (20 Marks)