Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. 2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice.

CBCS SCHEME

USN						18AU71

Seventh Semester B.E. Degree Examination, July/August 2022 Finite Element Modelling and Analysis

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Write the basic steps in finite elements method.

(10 Marks)

b. Derive the differential equation of equilibrium for a 2D body.

(10 Marks)

OR

- 2 a. Write the advantages, disadvantages and applications of finite element method. (10 Marks)
 - b. A bar of length L, cross sectional are a 'A' and modulus of elasticity E, is subjected to distributed axial load q = cx, where 'C' is a constant as shown in Fig.Q2(b). Determine the displacement of the bar at the end using Rayleigh Ritz method.

(10 Marks)

Module-2

- 3 a. Define shape functions. And derive the shape function in Global co-ordinate (or) Cartesian co-ordinates. (10 Marks)
 - b. Explain Pascal triangle by geometric invariance.

(06 Marks)

c. Write the convergence requirements.

(04 Marks)

OR

4 a. Derive the shape function in natural co-ordinates.

(10 Marks)

b. Use the Galerkin's method, to obtain the approximate solution of the differential equation

$$\frac{d^2y}{dx^2} - 10x^2 = 5, \qquad 0 \le x \le 1$$

with boundary condition y(0) = y(1) = 0 Take the trial functions as $N_1(x) = x(x-1)$ and $N_2(x) = x^2(x-1)$. (10 Marks)

Module-3

5 a. Using Penalty method of handling boundary condition determine the nodal displacement, stress in each element and support reaction in the bar shown in Fig.Q5(a) due to applied force P = 100 kN take $E_{steel} = 200 GPa$ $E_{cu} = 100 GPa$.

Fig.Q5(a)

(10 Marks)

b. Solve the following system of simultaneous equation by Gaussian elimination method:

$$x_1 = 2x_2 + 6x_3 = 0$$

 $2x_1 + 2x_2 + 3x_3 = 3$
 $-x_1 + 3x_2 = 2$.

(10 Marks)

OR

- Consider the Four-bar truss shown in Fig.Q6 it is given that $E = 2 \times 10^5 \text{ N/mm}^2$ and $A_S = 100 \text{mm}^2$ for all elements.
 - a. Determine the element stiffness matrix for each element
 - b. Assemble the elemental stiffness matrix 'k' for the entire truss
 - c. Using the elimination approach, solve for the nodal displacement
 - d. Calculate stresses in each element
 - e. Calculate the reaction forces.

(20 Marks)

Module-4

- 7 a. Derive the shape function for a 4-noded quadratic bar element using lagrargian method.
 (10 Marks)
 - b. Briefly explain sub parametric elements and super parametric elements.
- (06 Marks)

c. Write the properties of shape functions.

(04 Marks)

18AU71

OR

8 a. Using Gaussian quadratic formula, evaluate:

$$I = \int_{-1}^{+1} (1 + r + 2r^2 + 3r^3) dr$$
 (08 Marks)

b. Evaluate the value of the integral $I = \int_{2}^{4} X \, dx$. (08 Marks)

c. What are higher order and isoparameteric elements? (04 Marks)

Module-5

9 a. Using Hermite shape function, derive the element stiffness matrix. (10 Marks)

b. Determine the deflection at the centre of the position of the beam carrying UDL. E = 200GPa;

 $I = 4 \times 106 \text{mm}^4.$

(10 Marks)

OR

10 a. Derive the equation for shape function of 1-D heat conduction. (10 Marks)

b. For the beam element shown in Fig.Q10(b), determine deflection under the given load.

* * * * *