USN

Seventh Semester B.E. Degree Examination, June/July 2024 Advanced Machine Learning

SSCHEME

Time: 3 hrs.

1

2

Max. Marks: 100

18AI72

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- In context to Gradient descent algorithm explain the steps involved in finding the Optimal a. Bias and Weights and Plotting the cost function against the iterations. (10 Marks) (10 Marks)
- With example explain the Logistic Regression Model. b.

OR

- Discuss mean values, variances and covariance of Time-series stationary data with an a. (10 Marks) example.
 - With an example explain ARIMA Model with respect to time-series data. (10 Marks) b.

Module-2

- Describe the state transitions of Hidden Markov (HMM) and with an example explain two 3 a. (10 Marks) types of states in HMM.
 - Using K-Medoids algorithm solve the problem for the following dataset of 6 objects as b. shown in the Table Q3(b) below into clusters, for K=2.

Data	obiec	et]
Sample	Po	ints	1
X1	2	6	1
X2	3	4	1
X3	3	8	4
X4	4	2	
X5	6	2	
X6	6	4	1
Table ((b)		

Note : Randomly select 2 medoids cluster centers.

(10 Marks)

(10 Marks)

OR

- List and explain the different types clustering methods with example. a
 - For the given set of points, apply the clusters using agglomerative algorithm clustering : b. Complete link, use Euclidian distance and draw final cluster formed.

Data	Data object				
Points	A	В			
P1	1	1			
P2	1.5	1.5			
P3	5	5			
P4	3	4			
P5	4	4			
P6 .	3	3.5			

(10 Marks)

4

1 of 2

(08 Marks)

<u>Module-3</u>

5 a. With the code snippets explain the ways of applying Association Rules. (10 Marks)
b. Explain the use of "Surprise" – Python library in finding the best model and making predictions. (10 Marks)

OR

- 6 a. In context to Bag to Words model explain the following :
 - i) Count Vector Model
 - ii) Term frequency vector Model

iii) Term Frequency–Inverse Document Frequency (TF-IDF) model. (10 Marks)

b. With an example explain Stemming and Lemmatization techniques in context to convert the word into root words. (10 Marks)

Module-4

- 7 a. Write a note on :
 - i) Bipolar activation functions
 - ii) Unipolar activation functions
 - iii) RAMP function
 - iv) Identity function.
 - b. Solve AND function and ANDNOT function using McCulloch-Pitts neuron. (12 Marks)

OR

8	a.	What is	Artificial	Neural Netwo	k and	write	a	note	on	Representational	Power	of
		Perceptro	n.	60) "						1	(08 Mai	:ks)
b. What are the difficulties in applying Gradient De					nt Desc	t Descent algorithm?				(06 Mai	rks)	

c. With an example explain common operators required for genetic algorithms. (06 Marks)

Module-5

- 9 a. Write a note on :
 - i) Estimating hypothesis accuracyii) Sample error and true error. (10 Marks)
 - b. Briefly explain the techniques required to estimate confidence in interval. (10 Marks)

OR

10 a. Explain k-nearest neighbor learning algorithm with respect to instant based learning. (10 Marks)

b. What is Q-function, briefly explain the algorithm for learning Q-function. (10 Marks)