Seventh Semester B.E. Degree Examination, June/July 2024 Computational Fluid Dynamics

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Derive momentum equation in non-conservative form and deduce it to conservative form.

 (12 Marks)
 - b. Write a short note on:
 - i) Shock capturing method
 - ii) Shock fitting method.

(08 Marks)

OR

2 a. Derive substantial derivative equation and arrive at an expression in the following form:

 $\rho.\frac{Du}{Dt} = \frac{\partial(\rho u)}{\partial t} + \nabla(\rho u V). \tag{10 Marks}$

b. Define boundary conditions and write a note on physical boundary conditions used in CFD.

(10 Marks)

Module-2

- 3 a. How does a quasi-linear partial differential equation get classified and explain using Cramer's rule. (10 Marks)
 - b. Describe the external features of elliptic equation and explain its impact on physical behaviour of flow field. (10 Marks)

OR

4 a. Explain the mathematical behaviour of parabolic equation along with one case-study.

b. Consider an irrotational, 2-D, inviscid, steady compressible flow, classify the characteristic lines using Eigen-value method for

$$(1 - M_{\infty}^{2}) \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$
$$\frac{\partial u}{\partial y} - \frac{\partial v}{\partial y} = 0$$

(10 Marks)

Module-3

5 a. With the help of relevant sketch, explain the elliptic grid generation.

(10 Marks)

- b. Write a note on the following:
 - i) Structured grids
 - ii) Unstructured grids.

(10 Marks)

OR

6 a. What are adaptive grids? Describe 2 types of grid adaptive methods.

(10 Marks)

b. Describe Hermite polynomial interpolation.

(10 Marks)

7	a. b.	Module-4 Briefly explain about time marching and space marching. Summarize stability analysis of explicit, implicit and multistep method.	(10 Marks) (10 Marks)
8	a. b.	OR Illustrate on Lax-Wendroff marching method. Write a note on the following: i) Numerical viscosity ii) Upwind scheme	(10 Marks)
		iii) Alternating direction implicit.	(10 Marks)
9	a. b.	Module-5 Briefly explain about cell-centered scheme. Summarize about spatial discritization.	(10 Marks) (10 Marks)
4.0		OR	(10.14 1.)
10	a. b.	Briefly explain cell-vertex scheme overlapping control volume. Explain high resolution scheme and upwind biasing.	(10 Marks) (10 Marks)
		G I I I I I I I I I I I I I I I I I I I	
			,
		9, 0,	
		6	
	G		
		9	
		2 of 2	
		2 of 2	
	C		

18AE72