Sixth Semester B.E. Degree Examination, July/August 2022 **Finite Element Methods**

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

Explain steps in finite element method. 1

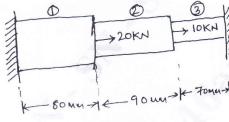
(10 Marks)

Explain simplex, complex and multiplex elements.

(10 Marks)

OR

Explain node numbering scheme.


(10 Marks)

Obtain the shape functions for linear one dimension elements.

(10 Marks)

Module-2

3 For the bar shown in Fig Q3, find the nodal displacements, stress in the middle portion and left support reaction.

 $E_1 = 70 \text{ GPa}$

 $E_2 = 105 \text{ GPa}$ $E_3 = 200 \text{ GPa}$

 $A_1 = 900 \text{ mm}^2$

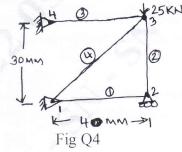
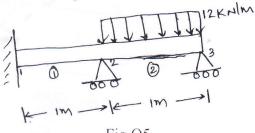

 $A_2 = 400 \text{ mm}^2$ $A_3 = 200 \text{ mm}^2$

Fig Q3

(20 Marks)

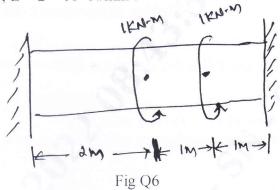
OR


A four bar truss element as shown in Fig Q4, determine nodal displacement and stress in each element. Area = 100mm^2 E = 2×10^5 N/mm² 4

(20 Marks)

Module-3

For the beam and loading shown in Fig Q5, determine mine the slopes at 2 and 3. 5

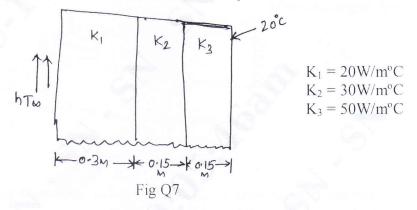


Take : E = 200 GPa, $I = 4 \times 10^6 \text{mm}^4$

(20 Marks)

OR

A bar of circular cross section having a diameter 50mm is firmly fixed at its ends. It is subjected to torque as shown in Fig Q6. Determine the angle of twist and shear stress. Take $G = 7 \times 10^4 \text{ N/mm}^2$, $E = 2 \times 10^5 \text{ N/mm}^2$.



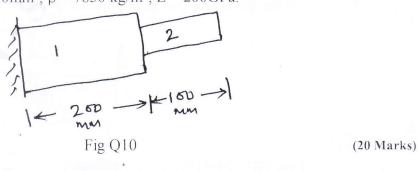
(20 Marks)

(20 Marks)

Module-4

A composite wall consists of three materials, as shown in Fig Q7. The outer temperature is $T_0 = 20^{\circ}\text{C}$, convective heat transfer takes place on the inner surface of the wall with $T_{\infty} = 800^{\circ}\text{C}$ and $h = 25\text{W/m}^{2\circ}\text{C}$. Determine the temperature distribution in the wall.

OR


- 8 a. Derive stiffness matrix for flow through porous medium. (10 Marks)
 - b. Derive 1D heat conductive finite element matrix using variational method. (10 Marks)

Module-5

- 9 a. Derive shape function for axisymmetric triangular element. (10 Marks)
 - b. Derive stiffness matrix of axisymmetric bodies with triangular element. (10 Marks)

OR

For the stepped bar shown in Fig Q10, determine the Eigen values and Eigen vectors. Take $A_1 = 400 \text{mm}^2$, $A_2 = 200 \text{mm}^2$, $\rho = 7850 \text{ kg/m}^3$, E = 200 GPa.

* * * * *