CBCS SCHEME

USN															. A)		18EC	C 6 .
-----	--	--	--	--	--	--	--	--	--	--	--	--	--	--	-----	----------	--	------	--------------

Sixth Semester B.E. Degree Examination, Dec.2023/Jan.2024 **Microwave and Antennas**

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

Explain the principle of working of Reflex Klystron. 1

A Reflex Klystron operates at 10GHx with beam voltage 300V, Repeller space = 1mm for $1\frac{3}{4}$ mode. Calculate $P_{R \text{ max}}$ and corresponding repeller voltage for a beam current of 18mA.

(06 Marks)

Explain Microwave system, with the help of neat diagram.

(06 Marks)

OR

Define Reflection coefficient and transmission coefficient of a transmission line. Derive and 2 (08 Marks) expression for each of them.

The input impedance of an antenna is $(73 + j42.5)\Omega$ at 900 MHz. Calculate the voltage standing wave ratio. (04 Marks)

Mention the characteristics of Smith chart.

(08 Marks)

Module-2

State and explain the properties of 'S' matrix.

(08 Marks)

Explain precision type variable attenuator, with a neat sketch.

(06 Marks) (06 Marks)

Explain H plane T junction. Derive its 'S' matrix.

OR Write the characteristics of Magic Tee. Derive scattering matrix for Magic Tee. (08 Marks)

Impedance matrix of a simple device is given by . Find its scattering matrix.

(08 Marks)

Write a note on Phase shifters.

(04 Marks)

Module-3

Explain the construction and field pattern of Microstrip line.

(06 Marks) (06 Marks)

Discuss different types of losses in Microstrip line. Define the following with respect to antenna:

Directivity

ii) Antenna beam efficiency

Field zones iii)

Effective aperture.

(08 Marks)

OR

Derive the relationship between Maximum effective aperture and Directivity. (06 Marks)

Show that Maximum effective aperture of a half wave $(\frac{\lambda}{2})$ antenna is $0.13\lambda^2$. (06 Marks)

Two identical transmitting and receiving antenna with gain of 15dBi at 2.45 GHz are separated by a distance of 3km. If the transmitted power is 20W, then calculate the received (08 Marks) power.

(06 Marks)

Module-4

Find the directivity of an antenna whose radiation intensity is given by $U = U_m \, \text{Cos}^4 \, \theta \, \, \text{Sin}^2 \, \varphi \ \, , \ \, 0 \leq \theta \leq \frac{\pi}{2} \hspace{0.5cm} , \ \, 0 \leq \varphi \leq 2\pi. \hspace{0.5cm} . \hspace$

Derive an expression for the field pattern for 'n' isotropic point sources of same amplitude (08 Marks) and phase.

Draw the field pattern of a broadside array with number element (n) = 5 and (06 Marks) spacing (d) = $\frac{\lambda}{2}$.

- Obtain an expression for the field pattern of two isotropic point sources with equal 8 (08 Marks) amplitude and phase. Also plot the field pattern. Assume $d = \frac{\lambda}{2}$.
 - Derive an expression for radiation resistance of short electric dipole. (08 Marks) (04 Marks)
 - Explain the principle of pattern multiplication.

- Derive an expression for far field components of small loop antenna. (08 Marks)
 - A Coaxial feed pyramidal horn antenna is designed at 915 MHz with aperture A = 50cm and B = 40cm and horn length from neck to mouth = 27.5cm. Assuming efficiency of 72%. Find (06 Marks) approximate gain of the horn antenna.
 - A parabolic dish antenna provides a power gain of 50dB at 10GHz with 70% efficiency.
 - Find i) HPBW
- ii) FNBW
- iii) Diameter.

(06 Marks)

Explain Yagi – Uda array with the help of neat diagram. (06 Marks) 10

A helical antenna with a flat circular ground plane is to be designed to operate in axial mode for a gain of 26dB_i at 5.8 GHz. Calculate i) Diameter of the helix Minimum (08 Marks) number of turns.

Find the radiation resistance of circular loop antenna of radius 0.32m, Operating at 1MHz. The radius of a wire used is 0.4mm conductivity of the wire is 57 ms/m and $\mu_r = 1.(06 \text{ Marks})$