CBCS SCHEME 18EE63 # Sixth Semester B.E. Degree Examination, June/July 2024 **Digital Signal Processing** Time: 3 hrs. Max. Marks: 100 Note: Answer any FIVE full questions, choosing ONE full question from each module. ## Module-1 1 a. Calculate 8-point DFT of $x(n) = \cos\left(\frac{n\pi}{4}\right)$. Draw magnitude and phase of x(k). (10 Marks) b. Derive the DFT properties for Periodicity and linearity property. (10 Marks) #### OR 2 a. Compute circular convolution of discrete sequence $x_1(n) = \{1, 3, 5, 3\}$ $x_2(n) = \{2, 3, 1, 1\}$ by i) Circular method ii) Matrix method. (10 Marks) b. Find the output y(n) of a filter whose impulse response is $h(n) = \{1, 1, 1\}$ and the input signal to the filter is $x(n) = \{3, -1, 0, 1, 3, 2, 0, 1, 2, 1\}$. Using overlap save method. (10 Marks) ## **Module-2** a. Develop an 8-point DIF-FFT algorithm starting from DFT. State clearly all the step. Explain how it reduces the number of computation. (10 Marks) b. Find DFT of $x(n) = \{1, 1, 1, 1, 0, 0, 0, 0\}$ using DIT – FFT algorithm show all the intermediate result in signal flow graph. (10 Marks) #### OR 4 a. The DFT x(k) of sequence is given as $x(k) = \{0, 2, +2j, -j4, 2-j2, 0, 2+2j, j4, 2-j2\}$ using using IDIF – FFT. Determine x(n). (10 Marks) b. Develop an 8-point IDIT-FFT algorithm starting from DFT. Draw the complete signal flow graph to find x(n). (10 Marks) #### Module-3 5 a. Design an analog Butterfly filter has a gain – 2dB and 20r/s and attenuation in excess of 10dB beyond 30r/s. (10 Marks) - b. Determine the transfer function if Chebyshev filter for the following specification: - i) Maximum passband repple is 1dB - ii) Stop and band attenuation is 40dB for $\Omega \ge 4r/s$. (10 Marks) #### OR 6 a. For the constraints $0.8 \le |H(e^{jw})| \le |$ for $0 \le w \le 0.2\pi$, $|H(e^{jw})| \le 0.2$ for $0.6\pi \le w \le \pi$. Design a Butterworth digital filter using bilinear transformation. Assume T = 1 Second. (10 Marks) Using Impulse invariant technique find the transfer function of digital filter H(z) for analog Transform function $$H(s) = \frac{b}{(s+a)^2 + b^2}.$$ (10 Marks) #### Module-4 - 7 a. Design a Chebyshev filter with $T = \overline{1}$ second using Bilinear transformation for the following specification. - i) $0.8 \le |H(e^{jw})| \le 1$ for $0 \le w \le 0.2\pi$ - ii) $|H(e^{jw})| \le 0.1$ for $0.5\pi \le w \le \pi$ (10 Marks) - b. Realise the system for direct Form I and direct form II. $$H(z) = \frac{0.7 - 0.25z^{-1} - z^{-2}}{1 + 0.1z^{-1} - 0.72z^{-2}}.$$ (10 Marks) #### OR 8 a. Obtain the parallel form and cascade form for given system. y(n) = 0.75 y(n-1) - 0.125y(n-2) + 6 x(n) + 7x(n-1) + x(n-2) (10 Marks) b. Design a maximally flat digital LPF to meet following specification. $0.8 \le |H(e^{jw})| \le 1 \text{ for } 0 \le w \le \pi/4$ $|H(e^{jw})| \le 0.18$ for $0.75\pi \le w \le \pi$ Using impulse invariant transformation. Assume T = 1 Sec. (10 Marks) ### Module-5 - 9 a. For a given FIR filter y(n) = x(n) + 2/5 x(n-1) + 3/4x(n-2) +. Draw direct form I and Lattice structure. (10 Marks) - b. Design the symmetric FIR lowpass filter whose desired frequency response is given as $$H_{d}(w) = \begin{cases} e^{-jwz} & \text{for } |w| \le w_{c} \\ 0 & \text{otherwise} \end{cases}$$ The length of the filter should be 7 and $w_c = 1$ radius/sample use rectangular window. (10 Marks) #### OF 10 a. Determine the filter coefficient h_d(n) for the desired frequency response of a low pass filter given by $$H_{d}(e^{jw}) = \begin{cases} e^{-j2w} & \text{for } -\frac{\pi}{4} \le w \le \frac{\pi}{4} \\ 0 & \text{for } \frac{\pi}{4} \le |w| \le \pi \end{cases}$$ If we define the new filter coefficient by $h(n) = h_d(n) \cdot w(n)$ where $$w(n) = \begin{cases} 1 & \text{for } 0 \le n \le 4 \\ 0 & \text{for otherwise} \end{cases}$$ Determine h(n) and also the necessary response $|H(e^{jw})|$ and compare with $|H_d(e^{jw})|$ determine $H(e^{jw})|$ Determine $H(e^{jw})|$ using Hamming window. (10 Marks) b. Determine form structures of casecade first order section also as a cascade 1^{st} and 2^{nd} order section form FIR lattice filter for $H(z) = |(1 + 0.6z^{-1})^5|$. (10 Marks) * * * * *