18EE61

Sixth Semester B.E. Degree Examination, June/July 2023 Control Systems

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. What is Control System? Compare open loop with closed loop control system. (05 Marks)
 - b. Explain Rotational motion of mechanical system.

(05 Marks)

c. For the Mechanical System shown in Fig.Q1(c). Obtain f – v analogous electrical system.

Fig.Q1(c)

(10 Marks)

OR

- 2 a. Define open loop, closed loop and feedback control system. Mention one example on each type.

 (05 Marks)
 - b. Explain A.C. servomotor.

(07 Marks)

c. Determine transfer function of mechanical system shown in Fig.Q2(c). Take θ_2 as output.

Fig.Q2(c)

(08 Marks)

Module-2

a. What is block diagram? List the properties of block diagram.

(05 Marks)

(10 Marks)

- b. Derive an expression for open loop transfer function (OLTF) and closed loop transfer function (CLTF). (05 Marks)
- c. For the block diagram shown in Fig.Q3(c). Determine the transfer function C(s)/R(s) using block diagram algebra.

Fig.Q3(c)

Any revealing of identification, appeal to evaluator and lor equations written eg, 42+8=50, will be treated as malpractice Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

OR

- Define: a.
 - i) Source and sink node
 - ii) Loop and loop gain
 - iii) Forward path.

(05 Marks)

(05 Marks)

- b. Explain Mason's gain formula.
- c. For the signal flow graph shown in Fig.Q4(c), obtain overall transfer function using Mason's gain formula.

Fig.Q4(c) (10 Marks)

- Derive an expression of second order system response for step input (under damped system).
 - b. An UFBCS has $G(s) = \frac{20(s+1)}{s^2(s^2+6s+8)}$

Find:

- i) Static error coefficient
- ii) Steady state error for step, ramp and parabolic input.

(06 Marks)

Find transient specification for unit A second order system is given by (08 Marks) step and assume 2% tolerance

a. Explain difficulties and remedy of R - H criterion.

(06 Marks)

b. Check the stability of the given characteristic equation using R - H criteria:

$$s^4 + 2s^3 + 4s^2 + 6s + 8 = 0.$$

(06 Marks)

c. A UFBCS has $G(s) = \frac{k(s+13)}{s(s+3)(s+1)}$ Using R - H criteria, calculate the range of 'K' for (08 Marks) which the system is stable

Module-4

- a. Explain:
 - i) Angle of asymptotes
 - ii) Break away points.

(04 Marks)

b. Sketch the root locus of UFBCS having $G(s) = \frac{k(s+1)}{s(s+2)(s^2+2s+2)}$. Mark the salient points.

OR

- Define: 8
 - i) Gain margin (GM)
 - ii) Phase Margin (PM).

(04 Marks)

b. Construct the bode plot of a UFBCS with G(s) = -. Find gain Margin and phase (16 Marks) margin. Comment of stability.

Module-5

Explain the Nyquist stability criteria.

(08 Marks)

(12 Marks) Sketch the Nyquist plot for the system with G(s)H(s)

OR

- What is lead compensation? Explain the procedure to design lead-lag compensation in 10 (08 Marks) frequency domain.
 - b. Explain
 - i) PI controller
 - ii) PD controller.

(12 Marks)