USN											
-----	--	--	--	--	--	--	--	--	--	--	--

18EC56

Fifth Semester B.E. Degree Examination, June/July 2023 Verilog HDL

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Explain typical design flow for designing VLSI IC circuits with a neat flow chart. (10 Marks)
 - b. Explain top-down design methodology and bottom-up design methodology. (06 Marks)
 - c. Explain trends in HDL's.

(04 Marks)

OR

2 a. Explain design hierarchy by taking 4-bit ripple carry counter.

(08 Marks)

- b. Define the following terms with examples '
 - i) Module
 - ii) Instances
 - iii) Instance name.

(06 Marks)

c. Explain the different levels of abstraction used for programming in verilog.

(06 Marks)

Module-2

3 a. With a neat block diagram, explain the components of verilog module.

(08 Marks)

b. Explain \$display, \$monitor, \$finish and \$stop system tasks with examples.

(08 Marks)

c. How to write comments in verilog HDL, explain with examples.

(04 Marks)

OR

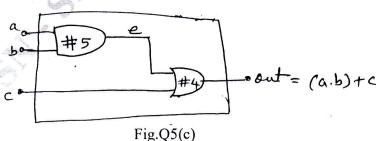
- 4 a. Explain the following data types of with an examples:
 - i) Nets
 - ii) Registers
 - iii) Integers
 - iv) Parameters.

(08 Marks)

b. Write verilog description of SR latch. Also write stimulus code.

(08 Marks)

c. With an example, explain hierarchical names.


(04 Marks)

Module-3

5 a. What are Rise, Fall and Turn-off delays? How they are specified in verilog.

(06 Marks)

- o. Write a verilog dataflow level of abstraction for 4 to 1 multiplexer using conditional operator. Also write stimulus code. (08 Marks)
- c. Design a gate level module according to the logic diagram given Fig.Q5(c). Write stimulus code delay.

(5(0)

(06 Marks)

Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice.

OR

- 6 a. Develop a gate-level verilog code for 4-bit ripple carry adder from 1-bit full adder. What is the output if A = 1010, B = 1100 and $c_{in} = 0$ at t = 0. (10 Marks)
 - b. What would be the output of the following:

```
a = 4'b0111, b = 4'b1001
```

- i) &b
- ii) a << 2
- iii) {a, b}
- iv) $\{2\{b\}\}$
- v) a ^ b
- vi) alb
- vii) a & b
- viii) ~ a.

(08 Marks)

- c. Declare following variables in Verilog,
 - i) A 8-bit vector called a in
 - ii) An integer called count.

(02 Marks)

Module-4

7 a. Discuss sequential and parallel blocks with examples.

(08 Marks)

- b. Write a verilog behavioural description of 8:1 multiplexer using case statement. (06 Marks)
- c. Illustrate the use while loop and repeat loop with examples.

(06 Marks)

OR

- 8 a. Explain blocking and non-blocking assignment statements with relevant examples. (08 Marks)
 - b. Write verilog behavioral description of 4-bit binary counter.

(06 Marks)

c. Write the verilog behavioral description of Dflip – flap.

(06 Marks)

Module-5

- 9 a. Define the term logic synthesis. With a neat flow-chart explain computer Aided logic synthesis process. (10 Marks)
 - b. What will the following statement translate to when run on a logic synthesis tool,
 - i) assign $y = (a\&b) \mid (c\&b)$ where y, a, b, c and d are 3 bit vectors
 - ii) if(s)

out = i1;

else

out = i0;

(10 Marks)

OR

10 a. With neat flow diagram explain synthesis design flow.

(10 Marks)

- b. Write a notes on:
 - i) Assign and deassign
 - ii) Overriding parameters.

(10 Marks)

* * * * *