CBCS SCHEME

USN				BESCK104E/ BESCKE104
USIN				

First Semester B.E/B.Tech. Degree Supplementary Examination, June/July 2024 Introduction to C Programming

Time: 3 hrs. Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. M: Marks, L: Bloom's level, C: Course outcomes.

-		Module - 1	M	T.	C
1	a.	Discuss with a neat block diagram, the basic organization of computer.	6	L2	CO1
	b.	Explain with example the basic data types of C language	7	L2	CO2
n	c.	Explain with block diagram the compiling and executing of C program.	7	L2	CO2
	<u> </u>	OR			
_			7	T 1	CO1
2	a.	Brief out the generation of computers with examples.	7	L1 L2	CO2
	b.	Explain the basic structure of C program with an example.		L2	CO ₂
	C.	Discuss about the variables and constants of C language with examples.	6	LZ	COZ
		Module – 2			
3	a.	Explain type conversion of expression in C language show the steps of type	6	L3	CO2
3	u,	conversion for the expression :			
	¥	char ch;			
	25	int i;			
		float f;			
	-	double d, res;			
	•				
	V.	res = (ch + i) * (f/i) + (d - f);			
			0	12	CO2
	b.	Explain various types of decision control statements of C language with	8	L2	CO2
		syntax and example.		7.2	600
	c.	Write a program to find the largest of three uses defined floating point numbers.	6	L3	CO2
		OR			
4	a.	Discuss with syntactic structure and flow chart of preparing the for loop	6	L2	CO2
		statement in C language. Give examples.			
	b.	Explain use of break and continue statements in C language.	6	L2	CO2
	c.	List and discuss the operators of C language with example.	8	L2	CO2
		Module 3			
5	a.	Discuss the implementation of uses defined function with suitable examples.	7	L2	CO3
	b.	Implement matrix multiplication and validate the rules of multiplication with	7	L3	CO3
		C program.			
	c.	Differentiate between call by value and call by reference using suitable	6	L2	CO2
		examples.			
		OR			•
6	a.	Explain the design and implementation of one dimensional array with	6	L2	CO3
0	a.	example.	-		
	L.	Discuss about the storing and accessing of elements in one dimensional array.	6	L1	CO3
	b.	Write a C program to sort the given N numbers using the bubble sort	8	L3	CO3
	-				
	c.	algorithm.	-		

BESCK104E/ BESCKE104

		Module – 4	6	L3	CO2
7	a.	Write a program to concatenate two strings without using built-in function.	<u>6</u> 7	L3	CO3
	b.	T 1: 1 wiltidimensional array with example.	7	L3	CO5
	c.	Write functions to implement string operations such as compare, string length.	1	LS	COS
		Convince the parameter passing techniques.			
		OR Catalana in Clanguage	6	L2	CO ₃
8	a.	Discuss the functions for character manipulations of strings in C language.	8	L3	CO5
	b.	Write a C program to read and write the names of n students of a class using	U		
		the string array.	6	L1	CO ₃
	c.	How to pass an array to a function? Discuss with simple examples.	Ū		
		Module – 5			
		Discuss about the declaration and initialization of pointer variables in C	6	L1	CO4
9	a.				
		language.	6	L2	CO3
	b.	Discuss an array of strings with an example. Develop a C program using pointers to compute the sum, mean and standard	8	L3	CO4
	c.	deviation of all elements stored in an array of N real numbers.			
		deviation of all elements stoict in an array of the real			
10		Tr. 1 in the advictions in Clanguage with examples.	6	L2	COS
10	a. b.	Implement a structure of student with elements NAME, USN and GRADE,	8	L3	COS
	υ.	White function to read and write student structure.			
	c.	Explain the passing of pointer variable to a function with an example.	6	L1	CO ₂
	C.	Explain the public 1-1			
	•	****			
					140
		2 of 2			
		•			
			Ŷ		
			¥		
		2 of 2			