18EE54

Fifth Semester B.E. Degree Examination, June/July 2024 **Signals and Systems**

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

Define signals and systems. And explain the classification of signals. 1

(08 Marks)

Given x(n) = [6 - n][u(n) - u(n - 6)]. Sketch the following signal i) y(n) = x(2n-3) ii) y(n) = x(4-n)

(08 Marks)

Given $x(t) = \cos(2t) + \sin(3t)$. Check for the periodicity of given signal, if periodic find its fundamental period. (04 Marks)

Determine the system $y(t) = e^{x(t)}$ is i) Linear ii) time invariant iii) Memory 2 iv) Causal. a. (06 Marks)

Find energy or power of a given signal b.

$$x(t) = 2 : 0 \le t \le 2$$

= -t + 4 : 2 \le t \le 4
= 0 : otherwise

(08 Marks)

For a continuous time signal x(t) shown in Fig Q2(c). Sketch the signal y(t) = x(3t + 2)

Fig Q2(c)

(06 Marks)

Module-2

Evaluate the continuous time convolution integral given below. $y(t) = e^{-2t} u(t) u(t + 2)$ 3 (10 Marks)

Evaluate the step response for the LTI system represented by the impulse response b. h(t) = tu(t). (10 Marks)

OR

Find the natural response of the system described by the differential equation.

$$\frac{d^{2}y(t)}{dt^{2}} + 3\frac{dy(t)}{dt} + 2y(t) = x(t) + \frac{dx(t)}{dt}$$

$$y(0) = 0 \quad : \frac{dy(t)}{dt}\Big|_{t=0} = 1.$$
(10 Marks)

Sketch the direct form I and direct form II implementations for the difference equation.

$$y(n) + \frac{1}{2}y(n-1) - y(n-3) = 3x(n-1) + 2x(n-2)$$
 (10 Marks)

Module-3

- State and prove the following properties of continuous time Fourier transform (10 Marks) 5 i) Time shift ii) Frequency differentiation
 - Find the frequency response and the impulse response of the system described by the (10 Marks) differential equation, $\frac{dy(t)}{dt} + 8y(t) = x(t)$.

OR

Compute the Fourier transform of the following signals:

i)
$$x(t) = e^{-at} \cdot u(t)$$
 ii) $x(t) = t u(t)$

(10 Marks)

Find the inverse Fourier transform of

Find the inverse Fourier transform of

i)
$$x(jw) = \frac{jw}{(2+jw)^2}$$
 ii) $K(jw) = \frac{-jw}{(jw)^2 + 3jw + 2}$ (10 Marks)

Module-4

State and prove Parseval's theorem of discrete time Fourier transform. (10 Marks)

Find the DTFT of the signal

Find the DTFT of the signal
i)
$$x(n) = 3^n u(-n)$$
 ii) $x(n) = \left(\frac{1}{3}\right)^{n+1} u(n+1)$ (10 Marks)

Find the inverse DTFT for $x(e^{j\Omega}) = \frac{6}{e^{-j2\Omega} - 5e^{-j\Omega} + 6}$ (06 Marks)

Using the appropriate properties, find the DTFT of the following signal $x(n) = \left(\frac{1}{2}\right)^n u(n-2)$

(06 Marks)

Obtain the difference equation description for the system having impulse response

Obtain the difference equation description for the system
$$h(n) = \delta(n) + 2\left(\frac{1}{2}\right)^n u(n) + \left(\frac{-1}{2}\right)^n u(n). \tag{08 Marks}$$

Module-5

a. Explain the properties of ROC

(06 Marks)

b. For the given difference equation find transfer function

For the given difference equation and disaster
$$y(n) - y(n-1) + \frac{1}{4}y(n-2) = x(n) + \frac{1}{4}x(n-1) - \frac{1}{8}x(n-2)$$
 (08 Marks)

(06 Marks) c. Find the Z-transform and ROC of the function $x(n) = 2^{-n} u(-n)$.

Find the inverse z-transform of the following using partial fraction expansion method 10

$$x(z) = \frac{1 + 2z^{-1} + z^{-2}}{1 - \frac{3}{2}z^{-1} + \frac{1}{2}z^{-2}} \text{ with ROC} |z| > 1.$$
(10 Marks)

b. Explain the following properties of 'Z' transform i) Time shifting ii) Convolution.

(10 Marks)