CBCS SCHEME

USN						18AE54

Fifth Semester B.E. Degree Examination, Jan./Feb. 2023 **Introduction to Composite Materials**

Time: 3 hrs. Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. Assume missing data suitably.

Module-1

- Define a composite material. Explain how composites are broadly classified. 1 (10 Marks) Differentiate between thermosetting and thermoplastic polymer. b. (06 Marks) (04 Marks)
 - Write a note on laminated composites.

- OR 2 Explain the following methods of processing MMC's:
 - Solid state processing (any one method)
 - Liquid state processing (any one method) (16 Marks) (04 Marks)
 - b. List the properties of MMC.

Module-2

Discuss the filament winding technique of preparing laminated composites with neat sketch. 3

(10 Marks) Explain the pultrusion process with neat sketch. (10 Marks)

OR

Explain with neat sketch the injection moulding process.

(08 Marks)

Explain Laser beam cutting of composites with neat sketch.

(08 Marks)

Write a note on Adhesive bonding.

(04 Marks)

Module-3

- Using strength of material approach, derive expression for effective axial modulus, and major Poisson's ratio of a UD lamina.
 - b. A glass/epoxy lamina consists of a 70% of fiber volume fraction. Assume the density of fiber and matrix are $\rho_f = 2500 \text{ kg/m}^3$ and $\rho_m = 1200 \text{ kg/m}^3$ respectively. Determine:
 - Density of composite
 - Mass fraction of glass and epoxy (ii)
 - (iii) Volume of composite lamina, if the mass of lamina is 4 kg
 - (iv) Volume of fiber and epoxy
 - Mass of fiber and epoxy

(08 Marks)

OR

Derive the stress-strain relationship for a 2D unidirectional angle lamina in its global and local axes. (10 Marks)

b. For a 60° angle lamina of graphite/epoxy as shown in Fig.Q6(b). Find the: (i) Compliance matrix (ii) Global strain. If the applied stress are $\sigma_x = 2$ MPa, $\sigma_y = -3$ MPa and $\tau_{xy} = 4$ MPa, (iv) Local strain. The properties of the lamina are $\gamma_{12} = 0.28$, find: (iii) Local stress $G_{12} = 7.17 \text{ GPa}, E_1 = 181 \text{ GPa}, E_2 = 10.3 \text{ GPa}.$

Fig.Q6(b)

(10 Marks)

Module-4

Write a note on Tsai Hill theory and Tsai-Wu failure theory.

(10 Marks)

Find the maximum value of s > 0 if a stress of $\sigma_x = 2s$, $\sigma_y = -3s$, $\tau_{xy} = 4s$ is applied to the 60° lamina of graphite/epoxy. Use maximum stress failure theory and the properties of unidirectional lamina are $E_1 = 181$ GPa, $E_2 = 10.3$ GPa, $(\sigma_1)_{ult} = \pm 1500$ MPa, $(\sigma_2)_{ult}^T = 40 \text{ MPa}, \ (\sigma_2)_{ult}^C = -246 \text{ MPa}, \ (\tau_n)_{ult} = \pm 68 \text{ MPa}.$ Also find the maximum stress that (10 Marks) can be applied before failure.

- Derive A, B and D matrix by considering force, stress-strain and moments. (10 Marks)
 - Find A, B, D matrices for the 2 ply laminate as shown in the Fig.Q8(b). Assume both the laminate have identical stiffness matrix Q as follows:

(10 Marks)

Module-5

- Suggest the experimental setup to test composite for tension and shear properties. (10 Marks)
 - Explain the application of composites in Aircraft field.

(10 Marks)

- (10 Marks) Explain ultrasonic testing of composites. List its advantages.
 - b. Discuss the application of composite in sports and automobile fields.

(10 Marks)