Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8=50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

CBCS SCHEME

USN							18AE/AS52
USIN						O- 7	

Fifth Semester B.E. Degree Examination, Dec.2023/Jan.2024 Aerodynamics – II

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. Use of Gas Tables is permitted.

Module-1

- 1 a. Write the principle of energy equation and derive the relation for energy equation in differential form. (10 Marks)
 - b. The pressure, temperature and Mach number at the entry of a flow passage are 2.45 bar, 26.5° C and 1.4 respectively. If the exit Mach number is 2.5. Determine for adiabatic flow of a perfect gas ($\gamma = 1.3$, R = 0.469 kJ/kg-K).
 - (i) Stagnation temperature
 - (ii) Temperature and velocity of free at exit
 - (iii) The flow rate per square meter of the inlet cross section.

(10 Marks)

OR

- 2 a. Describe the variation of pressure along the convergent-divergent duct for various back pressures with a neat sketch. (10 Marks)
 - b. Air ($C_p = 1.05 \text{ kJ/kgK}$, $\gamma = 1.38$) at $P_1 = 3 \times 10^5 \text{ N/m}^2$ and $T_1 = 500 \text{ K}$ flows with a velocity of 200 m/s in a 30 cm diameter duct. Calculate: (i) Mass flow rate (ii) Mach number (iii) Stagnation temperature (iv) Stagnation pressure values, assuming the flow an compressible and incompressible. (10 Marks)

Module-2

- 3 a. Write the equation for normal shock wave and obtain Prandtl relation for normal shock wave.

 (10 Marks)
 - b. The state of a gas ($\gamma = 1.3$, R = 0.469 kJ/kgK) upstream of a normal shock wave is given by the following data: $M_x = 2.5$, $P_x = 2$ bar, $T_x = 275$ K. Calculate the Mach number, pressure, temperature and velocity of the gas downstream of the shock. Check the calculated values with those given in the gas tables. (10 Marks)

OR

- 4 a. Explain about Hugonoit curve and obtain relation for Hugonoit equation. (10 Marks)
 - b. A gas ($\gamma = 1.4$, R = 0.287 kJ/kgK) at a Mach number of 1.8, P = 0.8 bar and T = 373 K passes through a normal shock. Determine its density after the shock. Compare this value in an isentropic compression through the same pressure ratio. (10 Marks)

Module-3

5 a. Draw an oblique shock and obtain its relation for θ - β -M relation and explain its importance.

(10 Marks)

b. Write short note on supersonic compression and supersonic expansion.

(10 Marks)

OR

6 a. Write the Prandtl-Meyer equation for oblique shock wave.

(10 Marks)

b. Derive Rankine-Hugonoit equation for oblique shock.

	Module-4	
7	a. Derive small perturbation theory applicable for compressible flow.	(10 Marks)
* , **.	b. Explain boundary conditions for cambered airfoil of an angle of attach.	(10 Marks)
	OR	(10.34 - 1-)
. 8	a. Explain Prandtl-Glauret rule for a two dimensional subsonic flow.	(10 Marks) (10 Marks)
	b. Derive an expression for linearized pressure coefficient.	(IU Marks)
	Module-5	
	TY : 1 Carind transland evaloin with next sketch	(10 Marks)
9	b. Explain the pressure measuring instruments used in wind tunnel.	(10 Marks)
	U. Explain the pressure measures	
	OR	
10	a. With the help of relevant sketches, explain the various types of velocity measuring	g devices.
		(10 Marks) (10 Marks)
	b. Write short notes on shock tubes and shock tunnels.	(10 Marks)

		RC.
# # # # # # # # # # # # # # # # # # #		-
	2 of 2	
	2 of 2	
		* 1
# # # # # # # # # # # # # # # # # # #		
		*
8		