CBCS SCHEME

USN				7			BEMEM103/203
			1	l	1		

First/Second Semester B.E./B.Tech. Degree Examination, June/July 2024 Elements of Mechanical Engineering

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. M: Marks, L: Bloom's level, C: Course outcomes.

3. Use of thermodynamic data handbook is permitted.

		Module – 1	M	L	C					
Q.1	a.	Discuss the Emerging trends in manufacturing and automotive sector.	8	L2	CO1					
	b.	With neat sketch, explain the working of thermal power plant.	6	L2	CO1					
	c.	Discuss the difference between renewable and non-renewable energy	6	L2	CO1					
		sources.								
				2						
OR OR										
Q.2	a.	Explain the formation of steam at constant pressure with suitable sketches.	8	L2	CO1					
	b.	Define the following terms with respect to steam:	6	L1	CO1					
		(i) Sensible heat		0						
		(ii) Latent heat		=						
	-	(iii) Internal energy		7.0	604					
	c.	Find the specific volume and enthalpy of 1 kg of steam at 0.8 MPa, with	6	L3	CO4					
		$T_s = 170.4$ °C, $V_s = 0.2403$ m ³ /K, $h_f = 720.94$ kJ/kg, $h_{fg} = 2046.5$ kJ/kg:								
		(i) When the dryness fraction is 0.9								
-		(ii) When the steam is super heated to temperature of 300°C. The								
		specific heat of superheated steam is 2.25 kJ/kgK.								
				- wi						
0.2	Ι_	Module – 2								
Q.3	a.	With neat sketch, explain taper turning by swiveling of compound rest method.	8	L2	CO2					
	b.	Explain the following operations performed on drilling machine with neat	6	L2	CO ₂					
		sketch:		#						
		(i) Reaming	22	*						
		(ii) Tapping								
		(iii) Counter boring		T 0	COA					
	c.	Discuss plane milling, end milling and slot milling operation performed on milling machine.	6	L2	CO2					
	0	mining machine.								
		OR								
Q.4	a.	Define 3D printing also explain the steps involved in 3D printing with a flow chart.	7	L1	CO2					
	b.	Discuss the components of CNC machine with a neat sketch.	7	L2	CO2					
	c.	Discuss the advantages of CNC machine also write any three applications of 3D printing.	6	L2	CO2					
				_						

BEMEM103/203

		Madula 2			
	_	Module – 3	7	12	CO2
Q.5	a.	With neat sketch, explain the parts of IC engine.	7	L2	
	b.	Explain the working of 4-stroke petrol engine with neat sketch.	8	L2	CO2
	c.	A gas engine working on four-stroke cycle has a cylinder of 250 mm	5	L3	CO4
		diameter, length of stroke 450 mm and is running at 180 rpm. Its			
		mechanical efficiency is 80% when the mean effective pressure is			
		0.65 MPa. Find (i) Indicated power (ii) Brake power (iii) Friction power.			
		OR			
Q.6	a.	With neat sketch, explain the working of room air condition.	7	L2	CO ₂
	b.	Discuss the properties of good refrigerant.	6	L2	CO ₂
	c.	Explain with neat sketch, the working of Vapour Compression Refrigerator	7	L2	CO ₂
		(VCR).			
		Module – 4			
Q.7	a.	With a neat sketch, derive an expression for velocity ratio in Compound	8	L3	CO3
		Gear Train.			
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	b.	Discuss Open and Cross belt driver.	6	L2	CO3
9,00	c.	The velocity ratio of a belt drive is 3:2. If the diameter of the driven pulley	6	L3	CO3
		is 120 cm, which runs at 180 rpm. Find the diameter and speed of the driver			
		pulley and linear velocity of the belt.			
. 11		OR			-
Q.8	a.	With neat sketch discuss different types of flames in oxy-acetylene gas	8	L2	CO3
Q. 0		welding, also state application of each flame.			
	b.	Explain TIG welding process.	6	L2	CO3
	c.	Differentiate between Welding, Soldering and Brazing.	6	L1	CO3
	· .	Differentiate between wording, bottoming and Diazing.			
		Module - 5			
Q.9	a.	With neat sketch, explain the parts of electric vehicles.	8	L2	CO3
Q.5	b.	State the advantages and disadvantages of hybrid vehicles.	6	L2	CO3
	c.	Write the difference between electric and hybrid vehicles.	6	L1	CO3
	C.	White the difference between electric and hybrid ventores.			005
	.1	OR		1	
O 10		List different types of Robots configuration and discuss any two	8	L2	CO3
Q.10	a.	configuration in detail with sketch.	6	112	003
i.	7 4	Explain open and closed loop mechatronic system with an example for	6	L2	CO3
	D.		0	LZ	CUS
-		each.	-	L2	CO2
4	c.	Explain the elements of a Robotic system with neat sketch.	6		CO3

2 of 2