## CBCS SCHEME

| USN |  | - 11 |  |  |  |  |  |  | = |  |  | BEEE103/203 |
|-----|--|------|--|--|--|--|--|--|---|--|--|-------------|
|-----|--|------|--|--|--|--|--|--|---|--|--|-------------|

## First/Second Semester B.E./B.Tech. Degree Examination, June/July 2024 Elements of Electrical Engineering

Time: 3 hrs. Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. VTU Formula Hand Book is permitted.

3. M: Marks, L: Bloom's level, C: Course outcomes.

| -          |    | Module - 1                                                                                                                         | M        | L   | C               |
|------------|----|------------------------------------------------------------------------------------------------------------------------------------|----------|-----|-----------------|
| Q.1        | a. | State and explain the Kirchoff's laws as applied to an electric circuit.                                                           | 08       | L2  | CO1             |
| V          | b. | Two resistances 50 $\Omega$ and 100 $\Omega$ are connected in parallel. A resistance of                                            | 06       | L3  | CO1             |
|            |    | $20 \Omega$ is connected in series with the combination. A voltage of 230 V is                                                     |          |     |                 |
| = 1        | 1  | applied across the circuit. Determine the current in each resistor and voltage                                                     | *        |     | 12.             |
|            |    | across 20 $\Omega$ resistor. Calculate also the power consumed in all resistors.                                                   |          |     |                 |
|            | c. | State and explain Lenz's law.                                                                                                      | 06       | L2  | CO1             |
|            |    | OR                                                                                                                                 |          |     |                 |
| Q.2        | a. | State and explain Faraday's laws of electromagnetic induction.                                                                     | 08       | L2  | CO1             |
| 10 10      | b. | Derive an expression for dynamically induced EMF.                                                                                  | 08       | L3  | CO1             |
|            | c. | Two 1000 turn air cored coils, 100 cm long, having a cross-sectional area                                                          | 04       | L3  | CO1             |
|            |    | of 500 cm <sup>2</sup> are placed side by side. The mutual inductance between them is                                              |          |     |                 |
|            |    | 25 mH. Determine the self inductances of the coils and the co-efficient of                                                         |          |     |                 |
|            |    | coupling.                                                                                                                          |          |     | 1               |
| S -        |    | Module – 2                                                                                                                         | rs.      |     |                 |
| Q.3        | a. | Define Root Mean Square (RMS) value of an alternating current and derive                                                           | 08       | L1  | CO <sub>2</sub> |
|            |    | the equation for RMS value in terms of maximum value.                                                                              | <b>Y</b> |     |                 |
|            | b. | For the current wave $i = 200 \sin 314t$ .                                                                                         | 06       | L2  | CO2             |
|            |    | Determine i) RMS value ii) Average value iii) Frequency                                                                            | Α,       |     |                 |
|            | -  | iv) Form factor v) Peak factor.                                                                                                    |          |     |                 |
|            | c. | Show that in a pure inductor, the current lags behind the voltage by 90°.                                                          | 06       | L3  | CO2             |
|            |    | Also draw the voltage and current waveforms.                                                                                       | 77       |     |                 |
| 0.4        | T  | OR                                                                                                                                 | 00       | T.0 | COS             |
| <b>Q.4</b> | a. | Derive an equation for power consumed by an R-L series circuit. Draw the                                                           | 08       | L3  | CO2             |
|            | -  | waveform of voltage, current and power.                                                                                            | 06       | т 2 | CO2             |
|            | b. | A circuit consists of a resistance of $20\Omega$ an inductance of $0.05$ H connected                                               | 06       | L3  | CO2             |
|            |    | in series. A supply of 230V at 50 Hz is applied across the circuit.                                                                |          |     |                 |
|            | -  | Determine the current, power factor and power consumed by the circuit.  Explain i) Real Power ii) Reactive power iii) Power factor | 06       | L2  | CO2             |
|            | C. | With respect to single phase A.C circuits.                                                                                         | 00       | LZ  | COZ             |
|            | -  | Module – 3                                                                                                                         |          |     |                 |
| Q.5        | a. | What are the advantages of three phase systems over single phase system?                                                           | 06       | L2  | CO2             |
| Q.5        | a. | Explain.                                                                                                                           | 00       | LL  | CO2             |
|            | b. | Deduce the relationship between the phase and line voltage, line current                                                           | 08       | L3  | CO2             |
|            | "  | and power in a 3 phase star connected system.                                                                                      |          |     |                 |
|            | c. | Three coils each having a resistance of $20\Omega$ and an inductive reactance of                                                   | 06       | L3  | CO2             |
|            |    | $15\Omega$ are connected in star to a 400V, 3 phase 50 Hz supply. Calculate                                                        |          |     |                 |
|            |    | i) Line current ii) Power factor iii) Power supplied.                                                                              |          |     |                 |
|            |    | 1) Line current 11/1 ower factor 111/1 ower supplied.                                                                              | ليسيا    |     |                 |

|      |           | OR                                                                                                                                                 |          |          |    |
|------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----|
| Q.6  | a.        | Show that only two wattmeters are sufficient to measure power in a three phase balanced star connected system with the help of circuit diagram and | 08       | L3       | CO |
|      |           | phasor diagram.                                                                                                                                    |          |          |    |
|      | b.        | A balanced 3 phase star connected system draws power from 440 V supply.                                                                            | 06       | L3       | CO |
|      | ~         | The two wattmeters connected indicate $w_1 = 5$ kW and $w_2 = 1.2$ kW.                                                                             |          |          |    |
| e e  |           | Calculate power, power factor and current in the circuit.                                                                                          |          |          |    |
|      | c.        | Explain the following terms with respect to 3\phi system:                                                                                          | 06       | L3       | CO |
| 7    |           | i) Phase sequence ii) Balanced supply iii) Balanced load                                                                                           | *        |          |    |
|      |           |                                                                                                                                                    |          |          |    |
|      |           | Module 4                                                                                                                                           |          |          |    |
| Q.7  | a.        | With neat circuit diagram, explain construction and working of Wheatstone                                                                          | 08       | L2       | CO |
|      |           | Bridge and derive the conditions of balance.                                                                                                       | 0.5      |          |    |
|      | <b>b.</b> | With neat circuit diagram and truth table, explain two way control of a                                                                            | 06       | L2       | CO |
|      |           | Lamp load.                                                                                                                                         | 0.0      | T 0      | -  |
|      | c.        | Write a short note on Current transformer.                                                                                                         | 06       | L2       | CO |
|      |           | OR CI                                                                                                                                              | 0.6      | T 0      | CO |
| Q.8  | a.        | Explain important factor to be considered for choice of domestic wiring.                                                                           | 06       | L2       | CO |
|      | b.        | With neat circuit diagram, explain working of Kelvin double bridge for                                                                             | 08       | L2       | CO |
|      |           | measurement of low resistance.                                                                                                                     | 06       | T 2      | CO |
|      | c.        | Write a short note on Megger for insulation testing.                                                                                               | 06       | L2       | CO |
| 0.0  |           | Module – 5                                                                                                                                         | 06       | 1.2      | CO |
| Q.9  | a.        | Define tariff. Explain two part tariff for electricity billing.                                                                                    | 06<br>08 | L2<br>L2 | CO |
|      | b.        | What is earthing? With neat diagram explain plate earthing.                                                                                        |          | L2       | CO |
|      | c.        | With neat diagram, explain the working of Residual Current Circuit Breaker (RCCB).                                                                 | VO       | LZ       | CO |
|      |           | OR                                                                                                                                                 | <b>*</b> |          |    |
| O 10 |           | What is an electric shock? What are the precautions to be taken to prevent                                                                         | 06       | L2       | CO |
| Q.10 | a.        | against shock.                                                                                                                                     | 00       | LL       | CO |
|      | b.        | A consumer has a maximum demand of 100 kW at 60% load factor. If the                                                                               | 08       | L3       | CO |
|      | 0.        | tariff is Rs.200 per kW of maximum demand plus Rs.5 per kWh, Calculate                                                                             |          | 20       |    |
| 2    |           | the overall cost per kWh.                                                                                                                          |          |          |    |
|      | c.        |                                                                                                                                                    | 06       | L2       | CO |
|      |           |                                                                                                                                                    |          |          |    |
|      |           | ****                                                                                                                                               |          |          |    |
|      |           |                                                                                                                                                    |          |          |    |
|      |           |                                                                                                                                                    |          |          |    |
|      | 1         |                                                                                                                                                    |          |          |    |
|      | G         |                                                                                                                                                    |          |          |    |
|      | -600**    |                                                                                                                                                    |          |          |    |
|      | *         |                                                                                                                                                    |          |          |    |
|      | *         |                                                                                                                                                    |          |          |    |
|      | *         |                                                                                                                                                    |          |          |    |
|      | ***       | ****  ****                                                                                                                                         |          |          |    |
|      | **        |                                                                                                                                                    |          |          |    |
|      |           |                                                                                                                                                    |          |          |    |
|      | **        |                                                                                                                                                    |          |          |    |
|      | **        |                                                                                                                                                    |          |          |    |
|      |           |                                                                                                                                                    |          |          |    |
|      |           |                                                                                                                                                    |          |          |    |
|      |           |                                                                                                                                                    |          |          |    |
|      |           | 2 of 2 ·                                                                                                                                           |          |          |    |
|      |           | 2 of 2                                                                                                                                             |          |          |    |
|      |           | 2 of 2                                                                                                                                             |          |          |    |
|      |           | 2 of 2                                                                                                                                             |          |          |    |
|      |           | 2 of 2                                                                                                                                             |          |          |    |
|      |           | Write a short note on Fuse as protective device.  *****  2 of 2                                                                                    |          |          |    |