		CBCS &	SCHEME		
USN				18AE/AS42	
Fourth Semester B.E. Degree Examination, June/July 2024 Aerodynamics – I					
Tin	ne: 3	3 hrs.		Max. Marks: 100	
Note: Answer any FIVE full questions, choosing ONE full question from each module.					
1	a. b.	<u>Mo</u> Derive the integral form of continuity eq Explain the following aerodynamic flow	<u>dule-1</u> uation and hence deduce th s:	he differential form. (10 Marks)	
		(i) Inviscid versus Viscous flow(ii) Incompressible versus compressibl	e flow	(10 Marks)	
	OR				
2	a. b.	Obtain an expression for angular velo irrotationally for two-dimensional flow. Derive speed of sound in terms of densit	city and vorticity and als y and isentropic compressi	so show the condition of (10 Marks) ibility. (10 Marks)	
	Modulo 2				
3	a. b.	Explain typical airfoil aerodynamic characteristics at low speeds. (09 Marks) Name the classifications of NACA airfoils and write down the explanation of the digits: (i) NACA 2412 (ii) NACA 23012 (iii) NACA 65-218 (11 Marks)			
OR					
4	a.	Define aerodynamic center.		(02 Marks)	
	b.	Derive $x_{ac} = -\frac{m_0}{a_0} + 0.25$, where $c\bar{x}_{ac}$ - location of the aerodynamic center, m_0 - slope of the			
	c.	moment coefficient curve, a_0 - slope of the lift coefficient curve. (10 Marks) In low-speed, incompressible flow, the following experimental data are obtained for NACA 4412 airfoil section at an angle of attack of 4° : $c_1 = 0.85$ and $c_{m_{rel}/4} = -0.09$. Calculate the			
		location of the center of pressure.		(08 Marks)	
5	a.	$\frac{Mo}{Consider non-lifting flow over a circular and also show the Cp variation over the s$	dule-3 cylinder and derive the ex urface of the cylinder grap	xpression $C_p = 1 - 4 \sin^2 \theta$ bhically. (10 Marks)	
	υ.	velocity is 25 m/s, and the maximum velocity is 25 m/s, and the ma	cylinder with a diameter elocity on the surface of th tandard altitude of 3 km. of 3 km, $\rho = 0.90926$ kg/n	The free stream ne cylinder is 75 m/s. The Calculate the lift per unit m^3) (10 Marks)	
OR					
6	a. b.	Using classical airfoil theory, obtain the For symmetric airfoil, prove that the que the aerodynamic center.	expression for a symmetric arter-chord point is both t	c airfoil. (10 Marks) the center of pressure and (10 Marks)	

1 of 2

.

18AE/AS42

Module-4

- 7 a. Obtain the expression for the velocity induced by infinite and semi-infinite vertex filament using the Biot Savart Law. (10 Marks)
 - b. Discuss briefly the following :
 - (i) Downwash and Induced drag
 - (ii) Helmholtz's Vortex theorem

OR

8 a. Consider Elliptical Lift Distribution given by $\Gamma(y) = \Gamma_0 \sqrt{1 - \left(\frac{2y}{b}\right)^2}$. Derive the expression

for the induced angle of attack and induced drag coefficient. (12 Marks)
b. Consider a finite wing with an aspect ratio of 8 and a taper ratio of 0.8. The airfoil section is thin and symmetric. Calculate the lift and induced drag coefficients for the wing when it is at

an angle of attack of 5°. Assume that $\delta = \tau = 0.055$. (08 Marks)

Module-5

- 9 a. Describe the aerodynamic characteristics of swept wings with relevant graphs and sketches.
 - b. What are high lift devices? Discuss in detail about the high lift devices. (10 Marks) (10 Marks)

OR

- 10 Write short notes on the following:
 - a. Influence of downwash on tail plane
 - b. Ground effects
 - c. Critical Mach Number
 - d. Drag-Divergence Mach Number

(20 Marks)

(10 Marks)