# CBCS SCHEME

USN

18AE/AS42

## Fourth Semester B.E. Degree Examination, July/August 2022 Aerodynamics - I

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

- State the law of Conservation of mass. Derive an expression for one dimensional form of 1 continuity equation. (06 Marks)
  - b. Define and explain the Compressibility.

(04 Marks)

Define Mach number. Explain the classification of the flow regimes based on Mach number with a neat sketch. (10 Marks)

- Obtain the relation between Stream function and Velocity potential stating its inference. 2 a. (04 Marks)
  - b. Define the following: i) Path line ii) Stream line iii) Streak line. (06 Marks)
  - Derive the integral form of momentum equation for a control volume fixed in space.

(10 Marks)

Module-2

- Derive the relation to calculate the Aerodynamic forces N' and A' and the momentum M'LF 3 in terms of P,  $\theta$  and  $\tau$ . (10 Marks)
  - Consider the velocity field given by u Calculate the

equation of stream line passing through the point (0, 4). (04 Marks)

Define the term: i) Centre of Pressure ii) Co-efficient of Pressure

Aerodynamic center.

(06 Marks)

With a neat sketch, explain in detail the Airfoil nomenclature. 4 a.

(08 Marks)

With a neat sketch, explain the wing planform geometry.

(06 Marks)

c. Explain different types of drag.

(06 Marks)

Module-3

- Write short notes on the following: 5 a.
  - Kutta condition
- ii) Kelvin's Circulation theorem.

(08 Marks)

- Obtain an expression for the following for a lifting flow over cylinder: b.
  - Stream function
- ii) Location of stagnation points
- iii) Pressure co-efficient.

Also explain with a neat sketch, the location of stagnation point for different values of  $\Gamma$ .

(12 Marks)

OR

Derive the relation for Lift co-efficient and lift slope for a Cambered airfoil based on 6 Classical thin Airfoil theory. (10 Marks)

b. Consider the lifting flow over a circular cylinder with a diameter of 0.5m. The free stream velocity is  $25 \, \text{m/s}$  and the maximum velocity on the surface of the cylinder is  $75 \, \text{m/s}$ . The free stream conditions are those for a standard altitude of 3km. Calculate the lift per unit span on the cylinder. (Assume  $\rho = 0.90926 \, \text{kg/m}^3$  at 3km altitude, Maximum velocity occurs at when  $\theta = 90^\circ$ ).

#### Module-4

7 a. Explain in detail about Lifting surface theory and Vortex lattice method. (10 Marks)

b. Prove that induced drag co-efficient is directly proportional to square of lift co-efficient using elliptical lift distribution. (10 Marks)

### OR

8 a. Explain and derive Prandtl's lifting theory and its limitations. (12 Marks)

b. Explain the following.

i) Biot – Savart law ii) Helmholtz's theorem iii) Downwash. (08 Marks)

### Module-5

9 a. Explain in detail about Lift enhancing devices. (10 Marks)

b. Briefly explain Simplified horse – shoe vortex model and formation flight. (10 Marks)

#### OR

10 a. What is Swept Wing? Bring out the aerodynamic characteristics of swept wing, with relevant graphs and sketches. (10 Marks)

b. Write short note on the following:

i) Transonic Area Rule ii) Super Critical Airfoil. (10 Marks)