18MATDIP41

Fourth Semester B.E. Degree Examination, June/July 2024 Additional Mathematics – II

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Test for consistency and solve

$$5x + 3y + 7z = 5$$
, $3x + 26y + 2z = 9$, $7x + 2y + 10z = 5$

(07 Marks)

b. Find the eigen values and the corresponding eigen vectors for the matrix

$$\mathbf{A} = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$$

(07 Marks)

c. Solve the system of equations by Gauss-Elimination method:

$$2x + y + 4z = 12$$
, $4x + 11y - z = 33$, $8x - 3y + 2z = 20$

(06 Marks)

OR

2 a. Find the rank of the matrix $A = \begin{bmatrix} 1 & 2 & 3 & 2 \\ 2 & 3 & 5 & 1 \\ 1 & 3 & 4 & 5 \end{bmatrix}$

(07 Marks)

b. Investigate the value of λ and μ such that the system of equations,

x + y + z = 6, x + 2y + 3z = 10, $x + 2y + \lambda z = \mu$ may have,

- (i) Unique solution
- (ii) Infinite solution
- (iii) No solution

(07 Marks)

c. Solve the system of equations by Gauss-elimination method:

$$x + y + z = 6$$
, $x - y + 2z = 5$, $3x + y + z = 8$

(06 Marks)

Module-2

3 a. Find y(1.4) given that

X	1	2	3	4	5
У	10	26	58	112	194

Using Newton's forward interpolation formula.

(07 Marks)

- b. Find a real root of $f(x) = x^3 2x 5 = 0$, correct to three decimal places, using Regula-Falsi method. (07 Marks)
- c. Evaluate $\int_{0}^{6} 3x^{2} dx$ dividing the interval [0, 6] into SIX equal parts by applying Simpson's

$$\left(\frac{1}{3}\right)^{\text{rd}}$$
 rule.

(06 Marks)

OR

- Given f(40) = 184, f(50) = 204, f(60) = 226, f(70) = 250, f(80) = 276, f(90) = 304, find (07 Marks) f(85) using Newton's backward interpolation formula.
 - Find the real root of the equation $f(x) = xe^x 2 = 0$ correct to three decimal places, by using (07 Marks) Newton-Raphson method.
 - Evaluate $\int log_e x dx$, taking 6 equal strips by applying Weddle's rule:

4			400		1.0	F 0	5.2
Y	4	4.2	4.4	4.6	4.8	5.0	3.2
$y = \log_e x$	1.3863	1.4351	1.4816	1.5261	1.5686	1.6094	1.6487
$y - \log_e x$	1.0		L SAN			ALTERNATION	

(06 Marks)

5 a. Solve:
$$(4D^4 - 4D^3 - 23D^2 + 12D + 36)y = 0$$
. (07 Marks)

b. Solve:
$$(4D^2 + 17D + 12)y = e^{-x}$$
 (07 Marks)

b. Solve:
$$(6D^2 + 17D + 12)y - 6$$

c. Solve: $y'' + 9y = \cos 2x \cos x$ (06 Marks)

6 a. Solve:
$$(D^3 - 2D^2 + 4D - 8)y = 0$$
 (07 Marks)

b. Solve:
$$(D^2 - 4D + 13)y = e^{2x}$$
 (07 Marks)

b. Solve:
$$(D^2 - 4D + 13)y = C$$

c. Solve: $(D^2 - 8D + 9)y = 8\sin 5x$ (06 Marks)

Module-4

- Form the PDE, by eliminating the arbitrary function from $z = f(x^2 + y^2)$ (07 Marks) 7
 - (07 Marks) b. Solve: $\frac{\partial^2 z}{\partial x \partial y} = x^2 y$, by direct integration.
 - c. Solve: $\frac{\partial^2 z}{\partial x^2} a^2 z = 0$ under the conditions z = 0 and $\frac{\partial z}{\partial x} = a \sin y$ when x = 0. (06 Marks)

- Solve the equation $\frac{\partial^2 z}{\partial x^2} + z = 0$, given that $z = e^y$ and $\frac{\partial z}{\partial x} = 1$ when x = 0. (07 Marks)
 - b. Solve: $\frac{\partial^2 z}{\partial x \partial y} = \frac{x}{y}$ subject to the conditions $\frac{\partial z}{\partial x} = \log_e x$ when y = 1 and z = 0 when x = 1. (07 Marks)
 - c. Form the PDE, by eliminating the arbitrary constants a and b from the equation : (06 Marks) $z = a \log(x^2 + y^2) + b$

Module-5

In a certain computer centre, 47% of the programmers can program in FORTRAN 35% in 9 PASCAL and 20% in COBOL and every programmer can program in at least one of these languages. If the probability that a randomly chosen programmer can program in FORTRAN and PASCAL is 0.23, COBOL and FORTRAN is 0.12, PASCAL and COBOL is 0.11, determine the probability that a randomly chosen programmer can program in all (07 Marks) three languages.

- b. Three students x, y, z write an examination. Their chances of passing are $\frac{1}{2}$, $\frac{1}{3}$ and $\frac{1}{4}$ respectively. Find the probability that, (i) All of them pass (ii) at least one of them passes and (iii) at least two of them pass.
- c. A person is known to speak truth 3 out of 4 times. He throws a die and reports that the die shows a six. Find the probability that it is actually a SIX. (06 Marks)

OR

- 10 a. Find the probability that the birth days of 5 persons chosen at random will fall in 12 different calendar months.
 - b. If A and B are events with $P(A \cup B) = \frac{7}{8}$, $P(A \cap B) = \frac{1}{4}$, $P(A \cap \overline{B}) = \frac{1}{3}$, find P(A), P(B) and $P(\overline{A} \cap B)$.
 - c. Given $P(A) = \frac{1}{4}$, $P(B) = \frac{1}{3}$ and $P(AUB) = \frac{1}{2}$, evaluate P(A/B), P(B/A), $P(A \cap B)$ and P(A/B).

* * * * *