Cica achiene

18MATDIP41

Fourth Semester B.E. Degree Examination, July/August 2022 Additional Mathematics - II

Time: 3 hrs.

lax. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

Find the rank of the matrix

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & -3 & -1 \\ 0 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0 \end{bmatrix}$$

(06 Marks)

- Solve the system of equations: x + y-2y + 3z = 8; 2x + y - z = 3 by Gauss elimination method. (07 Marks)
- Find all the eigen values and corresponding eigen vectors (07 Marks)

OR

Find the rank of the matrix

$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 4 & 2 \\ 2 & 6 & 5 \end{pmatrix}$$

(06 Marks)

b. Using Gauss elimination method solve the system of equations 3x + 2y + 9z = 14.

$$x + 2y + 3z = 6$$
; $2x + 4y + z = 7$;

(07 Marks)

(07 Marks)

Find the eigen values of the matrix

Module-2

Use an appropriate Interpolation formula to compute f(6).

Х	A	2	3	4	5
у	1	-1	1	Y	1

(07 Marks)

- $\int 3x^2 dx$ rule by taking n = 6. Evaluate by using Simpson's
- (07 Marks)
- Find a real root of the equation $x^3 2x 5 = 0$ by Newton Raphson method.

(06 Marks)

- Find solution using Newton's Interpolation formula, at x = -1.

x	0	1	2	3
f(x)	1	0	1	10

(07 Marks)

18MATDIP41

b. Find the real root of the equation $\cos x = 3x - 1$ using Regula Falsi method. (07 Marks)

c. Evaluate $\int_{1}^{5.2} \log_e x$ taking n = 6 by Weddle's rule. (06 Marks)

Module-3

5 a. Solve: $(D^3 - 2D^2 + 4D - 8)y = 0$ (06 Marks)

b. Solve: $\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 3y = e^{2x}$ (07 Marks)

c. Solve: $\frac{d^2y}{dx^2} + 4y = \cos 4x$ (07 Marks)

OR

6 a. Solve: $\frac{d^3y}{dx^3} - 3\frac{dy}{dx} + 2y = 0$ (06 Marks)

b. Solve: $(D^2 - 6D + 9)y = 7e^{-2x} - \log 2$ (07 Marks)

c. Solve: $\frac{d^2y}{dx^2} - 16y = \sin 16x$ (07 Marks)

Module-4

7 a. Form the partial differential equation by eliminating the arbitrary constants from $z = (x - a)^2 + (y - b)^2$ (06 Marks)

b. Solve: $\frac{\partial^2 z}{\partial x \partial y} = x^2 y$ (07 Marks)

c. Solve: $\frac{\partial^2 z}{\partial y^2} - z = 0$; given that $z = \cos x$ and $\frac{\partial z}{\partial y} = \sin x$, when y = 0. (07 Marks)

OR

8 a. Form the partial differential equation by eliminating the arbitrary function 'f' from $f(x^2 + y^2, z - xy) = 0$ (06 Marks)

b. Solve the equation $\frac{\partial^2 z}{\partial y^2} = \sin xy$ (07 Marks)

c. Form the partial differential equation by eliminating the arbitrary constants

 $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ (07 Marks)

Module-5

9 a. Define: (i) Mathematical definition of probability

(ii) Mutually exclusive events

(iii) Independent events (06 Marks)

b. If A and B are two events with $P(A) = \frac{1}{2}$, $P(B) = \frac{1}{3}$ and $P(A \cap B) = \frac{1}{4}$.

Find (i) P(A/B) (ii) P(B/A) (iii) $P(\overline{A}/\overline{B})$ (iv) $P(\overline{B}/\overline{A})$ (07 Marks)

c. In a bolt factory there are four machines A, B, C, D manufacturing respectively 20%, 15%, 25%, 40% of the total production. Out of these 5%, 4%, 3%, 2% are defective. If a bolt drawn at random was found defective, what is the probability that it was manufactured by A?

(07 Marks)

18MATDIP41

OR

10 a. State and prove Baye's theorem.

(06 Marks)

b. A card is drawn at random from a pack of cards. (i) What is the probability that it is a heart? (ii) If it is known that the card drawn is red, what is the probability that it is a heart?

(07 Marks)

c. An Urn 'A' contains 2 white and 4 black balls. Another Urn 'B' contains 5 white and 7 black balls. A ball is transferred from the Urn A to the Urn B. Then a ball is drawn from the Urn B. Find the probability that it is white.
(07 Marks)