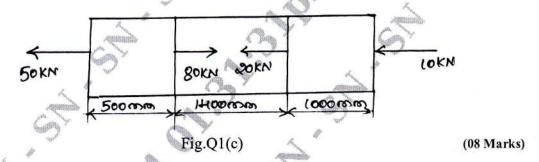
CBCS SCHEME

USN		ESCIVE.				1004	18MR34

Third Semester B.E. Degree Examination, Dec.2023/Jan.2024 Mechanics of Materials

Time: 3 hrs.

Max. Marks: 100

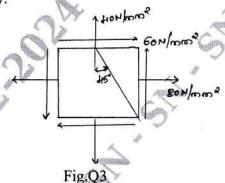

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. Define:
 - i) Poisson's ratio
 - ii) Modulus of Rigidity
 - iii) Bulk Modulus
 - iv) Factor of safety.

(04 Marks)

- b. Derive an expression for the extension of a tapering bar whose diameter d₂ at one end tapers linearly to a diameters d₂ at the other end in a length L. Under an axial pull P and the elastic modulus of its material is E.
- c. A brass bar having cross sectional area 300mm² is subjected to axial forces as shown in Fig.Q1(c). Find the elongation of the bar when E = 84GPa.


OR

- 2 a. Explain volumetric strain and obtain expression for volumetric strain for a circular bar.
 - (US Marks)
 - b. Establish a relationship between the modulus of elasticity and modulus of rigidity. (07 Marks)
 - c. A steel rail is lead so that there is no stress in the rails at 10°C. The maximum temperature expected is 45°C. Find:
 - i) Minimum gap between 2 rails to be left so that temperature stresses do not develop if the length of each rail 30m.
 - ii) Stress developed in the rails at the maximum temperature if there is no allowance for expansion
 - iii) Stress developed in the rails at the maximum if there is an expansion allowance of 7.5mm/rail
 - iv) Maximum temperature to have no stress in the rails if he expansion allowance is 15mm/rail
 - v) If the stress developed is 20N/mm^2 . What is the gap between the rails at the maximum temperature? Take $E = 2 \times 10^5 \text{N/mm}^2$ and $\alpha = 12 \times 10^{-6}/^{\circ}\text{C}$. (08 Marks)

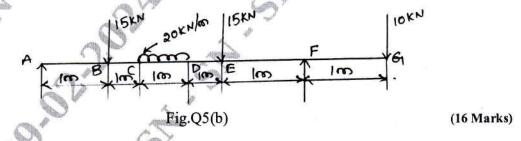
Module-2

- 3 Stress acting on the strained material is as shown in Fig.Q3. Determine:
 - i) Normal stress
 - ii) Shear stress
 - iii) Resultant stress
 - iv) Principal stresses and their location
 - v) Maximum shear stress and its location

Verify the results graphically.

(20 Marks)

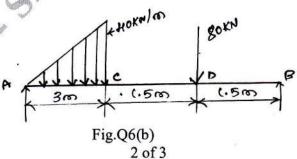
OR


- a. A thin cylinder of diameter d, thickness t, is subjected to an internal pressure of p. Prove that the change in volume, $dv = \frac{pd}{4^{TE}}(5-4\mu)v$. Where E = Young's modulus, $\mu = Poisson$'s ratio and v = volume of the cylinder.
 - b. A pipe of 400mm of internal diameter and 100mm thickness contains a fluid pressure 80N/mm². Find the maximum and minimum hoop stresses across the section. Also sketch the radial and hoop stress distribution across the section. (12 Marks)

Module-3

5 a. Explain shear force and bending moment.

(04 Marks)


b. Draw shear force and bending moment diagram for the beam shown in Fig.Q5(b).

OR

6 a. What are the different types of loads acting on a beam? Explain with sketches. (08 Marks)

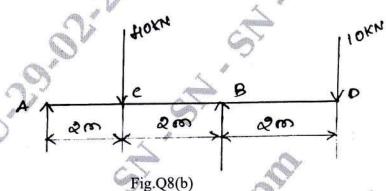
b. A simply supported beam AB of 6m span is loaded as show in Fig.Q6(b). Draw SFD and BMD.

(12 Marks)

Module-4

7 a. Prove the relations $\frac{M}{I} = \frac{\sigma}{Y} = \frac{E}{R}$ with usual notations.

(10 Marks)


b. A cast iron beam has an I – section with top flange 80mm × 40mm, web 120mm × 20mm and bottom flange 160mm × 40mm. If tensile stress is not to exceed 30N/mm² and compressive stress 90N/mm², what is the maximum uniformly distributed load the beam can carry over a simply supported span of 6m if the larger flange is in tension? (10 Marks)

OR

8 a. Derive differential equation for deflection with usual notations.

(10 Marks)

b. Find the deflection at C in the beam loaded as shown in Fig.Q5(b). Take EI = 10,000kN-m².

(10 Marks)

Module-5

- 9 a. A shaft is required to transmit 245KW power at 240rpm. The maximum torque may be 1.5 times the mean torque. The shear stress in the shaft should not exceed 40N/mm² and twist 1°/m length. Determine the diameter required if a shaft is solid and shaft is hollow with external diameter twice the internal diameter. G = 80kN/mm². (10 Marks)
 - b. A brass tube of external diameter 80mm and internal diameter 50mm is closely fitted to a steel rod of 50mm diameter to form a composite shaft. If a torque of 6kN is to be resisted by this shaft. Find the maximum stresses developed in each material and angle to twist in 2m length, $G_B = 40 \times 10^3 \text{N/mm}^2$ and $G_S = 80 \times 10^3 \text{N/mm}^2$. (10 Marks)

OR

- 10 a. Derive an expression for the critical load in a column subjected to compressive load, when both the ends are hinged, also mention the assumptions made in the derivation. (10 Marks)
 - b. A hollow cast iron whose outer diameter is 200mm and has a thickness of 20mm is 4.5m long and is fixed at both the ends. Calculate the safe load by Rankine formula using a factor of safety of 2.5. Find the ratio of Euler's to Rankines load. Take $E = 1 \times 10^5 \text{N/mm}^2$. Rankine constant is 1/1600 for the ends fixed and $f_c = 550 \text{N/mm}^2$. (10 Marks)