CBCS SCHEME

BCHEE102/202

First/Second Semester B.E./B.Tech. Degree Examination, Dec.2023/Jan.2024 Chemistry for EEE Stream

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. VTU Formula Hand Book is permitted.

3. M: Marks, L: Bloom's level, C: Course outcomes.

				-	~
		Module – 1	M	L	C
Q.1	a.	Explain the band diagrams for conductors and insulators.	7	L2	CO1
	b.	Describe the production of electronic grade silicon from quartz by	7	L2	CO ₁
		Czochrolski method.			
	c.	Explain the preparation, properties and commercial applications of	6	L2	CO1
		graphene oxide.			
		OR			
Q.2	a.	What are conducting polymers? Explain the mechanism of polyacetylene.	7	L2	CO1
	b.	What is electroless plating? Describe electroless plating of copper in the	7	L2	CO1
	_	manufacture of double-sided PCB.			001
	c.	In a polymer sample 20% of molecules have molecular mass 15000 g/mol.	6	L3	CO ₁
		45% molecules have molecular mass 25000 g/mol remaining molecules			
		have molecular mass 27,000 g/mol. Calculate number average and weight			
	<u> </u>	average molecular weight of the polymer.			
0.0		Module – 2	_	T 4	000
Q.3	a.	What are batteries? Explain the classification of batteries with suitable	7	L2	CO2
	-	examples.	-	Т 2	CO3
	b.	What are photovoltaic cells? Describe the construction and working of a	7	L2	CO2
	+	photovoltaic cell.	-	12	COL
	c.	Explain the construction and working of li-polymer battery. Mention its	6	L2	CO ₂
		applications.			
0.4	Т_	OR	7	L2	CO2
Q.4	a.	Explain the construction and working of vanadium redox flow battery. Mention its applications.	/	LZ	CO2
	h	What are fuel cells? Explain the construction and working of methanol-	7	L2	CO2
	b.	oxygen fuel cell. Mention its applications.	'	LL	COZ
	C	Explain the construction and working of Na-ion battery.	6	L2	CO2
	· ·	Module = 3	<u> </u>		C02
Q.5	a.	What is metallic corrosion? Explain the electrochemical theory of	7	L2	CO3
Q.5	4.	corrosion, taking iron as an example.	,		
	b.	What is corrosion penetration rate? Calculate the CRR in both MPY and	7	L3	CO3
	D.	MMPY for a thick steel sheet of area 100 inch ² , which experience a weight	,		
		loss of 485 g after one year (density of steel 7.9 g/cm ³).			
	c.	Describe the extraction of copper and gold from E-waste.	6	L2	CO3
	10.	OR			
Q.6	a.	Write notes on:	7	L2	CO3
~		(i) Differential metal corrosion			
		(ii) Differential aeration corrosion			
	b.	Explain the sacrificial anode method for the corrosion control.	6	L2	CO3
	c.	What is e-waste? Describe the effects of e-waste on environment and	7	L2	CO3
		human health.			

		Module – 4	_	TA	CO
Q.7	a.	What are nanomaterials? Explain the any two size dependent properties of	7	L2	CO ₄
-		nanomaterials.			
	b.	What are pervoskite materials? Mention the properties and applications of	7	L2	CO
1	υ.	perovskite materials in opto electronic devices.			
	_	Describe the synthesis of nanomaterials by co-precipitation method.	6	L2	CO
	c.	OR			
			7	L2	CO
Q.8	a.	Explain the synthesis of nanomaterials by sol-gel method.	7		
	b.	What are QLED's? Mention its properties and applications.	6	L2	CO
	c.	Write notes on: (i) Nanophotonics (ii) Nanosensors	7	L2	CO
		Module – 5			*
Q.9	a.	What are reference electrode? Explain the construction and working of	7	L2	CO
Q.9	a.	calomel electrode.			
			7	L3	CO
	b.	Explain the principle, instrumentation and applications of potentiometric	'	LIS	
		sensor in the estimation of iron.	-		
	c.	The emf a cell Ag/AgNO _{3(0.001m)} //AgNO _{3(Xm)} /Ag is 0.059 V at 25°C, find	6	L3	CO
		the value of 'X'.			
		OR			
0.10		What are ion selective electrodes? Explain the construction and working	7	L2	CO
Q.10	a.		,		
		principle of glass electrode.	7	TO	CO
	b.	Explain the principle and instrumentation colorimetric sensor, mention its	7	L3	U
		applications.			
	c.	Explain how the strength of a weak acid determined using a conductometric	6	L2	CO
		sensor.			
	4				
	4	SH. SH. SH. SH. SH. SH.			