IISN						
	IISN					

18EC33

Third Semester B.E. Degree Examination, Dec.2023/Jan.2024 **Electronics Devices**

Max. Marks: 100 Time: 3 hrs.

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

Outline the classficiation of material based on conductivity and energy band diagram. 1

(10 Marks)

Classify the intrinsic and extrinisic materials, with the help of relevant diagrams. (10 Marks)

OR

- Define mass action law. Summarize the impurity scattering and lattice scattering. (10 Marks)
 - Define hall effect. With the help of neat diagram, relate an expression for current density interms of conductivity and electric field. (10 Marks)

Module-2

- Outline the qualitative description of current flow at a junction under equilibrium condition 3 (10 Marks) and biased conduction.
 - b. Establish the operation of a PN JUNCTION diode in reverse bias condition with a neat diagram of minority carrier distributions and Fermi level variation. (10 Marks)

OR

- Classify the Piece wise linear approximations of junction diode under ideal condition by (10 Marks) considering the various conditions. (10 Marks)
 - Describe the working of photo detectors with a relevant diagrams.

Module-3

- Summarize the charge carrier flow in a p-n-p transistor with a diagram. (10 Marks)
 - Illustrate the Ebers Moll model for a PNP transistor.

(10 Marks)

- Explain how BJT acts as a switch with necessary equations and diagrams. (10 Marks)
 - Explain the effect of base narrowing with the neat diagram and Drift in Base Region. (10 Marks)

Module-4

- Justify "field effect transistor is a voltage controlled current device". (10 Marks)
 - b. Explain the principle of operation of n-channel enhancement mode MOSFET with a neat (10 Marks) diagram and equations.

OR

- Illustrate the two terminal MOS structure using energy band diagram. (10 Marks)
 - Outline small signal equivalent circuit of JFET with neat diagram and explain the MOS (10 Marks) structure with the aid of parallel plate capacitor.

- Discuss the rapid thermal processing with a schematic diagram. (10 Marks) 9 (10 Marks)
 - Explain thermal oxidation process with neat diagram. b.

- Express the integration of other circuit elements with suitable diagrams. (10 Marks) 10
 - Explain CMOS process integration.

(10 Marks)

Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice.