CBCS SCHEME

USN	
-----	--

18EE35

Third Semester B.E. Degree Examination, June/July 2023 Digital System Design

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

a. Simplify the following in SOP form using K-Map

f(A,B,C,D) = ABC + AD + BD + CD + AC

(05 Marks)

b. Identify all prime implicants and essential prime implicants of the following functions using K-map $f(a, b, c, d) = \pi M(0, 2, 3, 8, 9, 10, 12, 14)$. (05 Marks)

c. Using Quine McCluskey tabulation method, obtain the set of prime implicants for the function: $f(a, b, c, d) = \Sigma(0, 1, 4, 5, 9, 10, 12, 14, 15) + \Sigma \phi(2, 8, 13)$ and hence obtain the minimal form of the given function employing decimal representation. (10 Marks)

OR

2 a. Reduce the function using K-map technique:

 $F(A, B, C, D, E) = \Sigma m(1, 4, 8, 10, 11, 20, 22, 24, 25, 26) + d(0, 12, 16, 17).$

(10 Marks)

b. Simplify using Quine McCluskey tabulation algorithm:

 $V = f(a, b, c, d) = \Sigma(2, 3, 4, 5, 13, 15,) + \Sigma d(8, 9, 10, 11).$

(10 Marks)

Module-2

3 a. Explain the concept of carry look ahead adder.

(07 Marks)

b. Design and implement a 2 bit compactor.

(08 Marks)

c. Implement the following Boolean function with 8:1 multiplexer

 $F(A, B, C, D) = \sum m(0, 2, 6, 10, 11, 12, 13) + d(3, 8, 14).$

(05Marks)

OR

4 a. Design a 4-bit parallel adder/subtractor using 7483.

(10 Marks)

b. Write the condensed truth table for a 4 to 2 line priority encoder with a valid output where the highest priority is given to the highest bit Position or input with highest index and obtain the minimal sum expressions for the outputs.

(10 Marks)

Module-3

- 5 a. Explain the working of a master-slave JK FF with the help of logic diagram, function table, logic symbol and timing diagram. (10 Marks)
 - b. Obtain the characteristic equation for D and T flip-flop.

(06 Marks) (04 Marks)

c. What do you mean by sequential circuit? Explain the help of block diagram.

OR

6 a. With a neat logic diagram, explain the working of positive edge triggerd D flip-flop.

(10 Marks)

b. Explain race around condition. How is it eliminated?

(05 Marks)

c. Realize SR flip-flop using only NOR Gates.

(05 Marks)

Module-4

7 a. Design BCD ripple counter using JK flip-flop.

(10 Marks)

- b. Explain with suitable logic and timing diagram:
 - i) SISO
 - ii) PIPO.

(10 Marks)

OR

- 8 a. Design a MOD-5 synchronous counter using JK flip-flop and implement it. Also draw the timing diagram. (10 Marks)
 - b. Explain Johnson counter with its circuit diagram and timing diagram.

(10 Marks)

Module-5

9 a. Explain Mealy model and Moore model for clocked synchronous sequential network.

(10 Marks)

b. A sequential circuit with 2D ffs A and B and input X and output Y is specified by the following next state and output equations:

$$A(t+1) = AX + BX$$

$$B(t+1) = A' X$$

$$Y = (A + B)X'$$

- i) Draw the logic diagram of the circuit
- ii) Derive the state table
- iii) Derive state diagram.

(10 Marks)

OR

10 a. A sequential circuit has one input and one output. The state diagram is shown in Fig.Q10(a). Design the sequential circuit with T flip-flop.

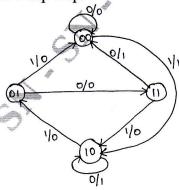


Fig.Q10(a)

(10 Marks)

- b. Write short notes on
 - i) PROM
 - ii) Flash memory.

(10 Marks)

2 of 2