18EE35

Third Semester B.E. Degree Examination, Jan./Feb. 2021 Digital System Design

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Define combinational logic. List the various steps in designing the combinational logic circuit and explain with a block diagram. (06 Marks)
 - b. Explain the canonical minterm and maxterm form with examples.

(04 Marks)

c. Simplify the Boolean function using K-map following as $P = f(a, b, c, d) = \Sigma m(2, 3, 4, 5, 13, 15) + \Sigma d(8, 9, 10, 11)$

 $Q = f(w, x, y, z) = \pi(1, 4, 5, 11, 12, 13, 14, 15) \cdot d(3, 9, 10).$

(10 Marks)

OR

2 a. Using K-map method, obtain a minimal SOP expression and implement the function using NAND gates.

 $x = f(a, b, c, d, e) = \sum m(1, 3, 4, 6, 9, 11, 12, 14, 17, 19, 20, 22, 25, 27, 28, 30).$ (08 M

(08 Marks)

b. Simplify using Quire – McCluskey method and realize the function using a basic gates.

 $M = f(a, b, c, d) = \Sigma m(7, 9, 12, 13, 14, 15) + \Sigma d(4, 11).$

(12 Marks)

Module-2

3 a. Design a combinational logic circuit that will convert BCD digit to Excess-3 BCD digit using gates. Construct a truth table and simplify each output equation using K-maps.

(08 Marks)

- b. Design a binary full adder using only 2-input NAND gates. Construct a truth table and write a Boolean expression for SUM and CARRY. (07 Marks)
- c. Design a 4 to 16 line decoder by cascading 2 to 4 line decoders which has the active low output and active low enable input. (05 Marks)

OR

4 a. Realize the following Boolean function using 8:1 MUX with 'wyz' as select inputs.

 $V = f(w, x, y, z) = \Sigma m(0, 1, 2, 5, 7, 8, 9, 12, 13).$

(05 Marks)

- b. Implement 4 bit parallel adder/subtract using 4-full adders blocks. Explain its operation if $C_{in} = 0$ the circuit should act as adder and if $C_{in} = 1$ the circuit act as subtractor. (05 Marks)
- c. Design a two-bit magnitude comparator with help of the truth table and simplification of the output equations using K-maps. Draw a logic diagram. (10 Marks)

Module-3

- 5 a. Explain the operation of SR Latch act as switch debouncer with help of the timing diagram.
 (05 Marks)
 - b. Explain the working of a Master-slave JK flip-flop with a neat logic diagram, function table, logic symbol and timing diagram. (10 Marks)
 - c. Obtain the characteristic equation of the JK and D flip-flops.

(05 Marks)

2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8=50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

OR

- 6 a. Differentiate the sequential logic circuit and combinational logic circuit. (04 Marks)
 - b. Explain the operation of SR latch with a neat logic diagram and timing diagram. (06 Marks)
 - c. Draw a neat diagram and explain the working of positive edge-trigger D-flipflop with function table, logic symbol and timing diagram. (10 Marks)

Module-4

- 7 a. Explain the working of 4-bit binary ripple counter using a positive edge trigger T-flip-flop with an enable line and relevant timing diagram. (08 Marks)
 - b. Design a mod-8 twisted ring counter and explain its operation. Write the count sequence table.

 (07 Marks)
 - c. With a neat logic diagram, explain the operation of the 4-bit SISO unidirectional shift register. (05 Marks)

OR

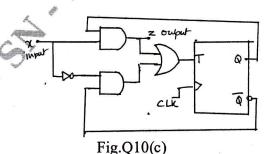
- 8 a. Design a synchronous counter with counting sequence. 3, 2, 5, 1, 0, 3 using D-flip-flips. (10 Marks)
 - b. With a neat logic diagram, explain the 4-bit universal shift register using D-flip-flops and a 4:1 MUX. Write a mode control and register operation. (10 Marks)

Module-5

- 9 a. With a suitable block diagram, explain the Mealy and Moore model in a sequential circuit analysis. (08 Marks)
 - b. Construct a sequential logic circuit with single input(x) and single output(z) by obtaining the state and excitation tables for the given state diagram as shown in Fig.Q9(b), using JK flip-flops.

(12 Marks)

OR


10 a. Differentiate a Mealy and Moore models.

(04 Marks)

b. Explain the following terms: i) ROM ii) PROM iii) Flash memory with a suitable diagram.

(06 Marks)

Analyze the following sequential logic circuit as shown in Fig.Q10(c). Obtain the excitation and output equation, transition table and state table. Also draw a state diagram.

(10 Marks)

* * * * *