USN

18EE35

Third Semester B.E. Degree Examination, Dec.2023/Jan.2024 **Digital System Design**

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. What are prime implicants and essential prime implicants? Write them for the function $y = \sum m (0, 1, 2, 5, 6, 7, 8, 9, 10, 13, 14, 15)$ and hence realize using NAND gates. (06 Marks)
 - b. Simplify the following Boolean expression using K-map $f(A, B, C, D, E) = \sum m(0, 2, 4, 6, 8, 16, 18, 20, 22, 24, 26, 28, 30) + dc(3, 7, 11, 15, 19, 23, 27, 31).$ (06 Marks)
 - c. Using Quine-Mc Cluskey method, obtain a minimal SOP expression of $f(a, b, c, d) = \sum m(1, 2, 6, 9, 10, 14) + dc(7, 8, 12)$. (08 Marks)

OR

- 2 a. Minimize the following expression in POS form using K-map:
 - i) $f(A, B, C, D) = \pi M(0, 2, 3, 8, 9, 12, 13, 15)$

ii) $f(A, B, C, D) = \pi M(0, 2, 4, 10, 11, 14, 15).$ (06 Marks)

- b. Design logic circuit that has 4 inputs, the output will be high when the majority of the inputs are high. Use K-map to simplify and realize using NAND gates. (06 Marks)
- c. Minimize the following expression using K-map and realize using NAND gates only:
 - i) $f(A, B, C, D) = \sum m(0, 1, 4, 8, 9, 10) + dc(2, 11)$
 - ii) $f(a, b, c, d) = \sum m(0, 1, 5, 6, 7, 8, 9) + dc(10, 11, 12, 13, 14, 15)$ (08 Marks)

Module-2

- 3. a. What is a multiplexer? Design a 8:1 MUX and realize using NAND gates. (06 Marks)
 - b. Realize using active high output 3 to 8 line decoder circuit and external gates
 - i) $F_1(A, B, C, D) = \sum m(0, 1, 2, 5, 7, 11, 15)$

ii) $F_2(A, B, C, D) = \pi m(3, 6, 7, 14)$. (08 Marks)

c. Draw the interface diagram of ten key interface to a digital system using decimal to BCD encoder. (06 Marks)

OR

- 4 a. Implement the Boolean expression $F(P, Q, R, S) = \sum m(0, 1, 3, 4, 8, 9, 15)$ using a 8:1 MUX choosing QRS as select lines. (06 Marks)
 - b. Design 1 bit comparator using
 - i) Basic gates ii) Decoder of 2 to 4 line converter.

(06 Marks)

c. Write the sum and carryout equations of 4 bit look ahead parallel adder and hence realize the complete fast adder circuit. (08 Marks)

Module-3

- 5 a. What is race around condition in JK flip flops? Explain how to overcome from this problem. Explain with the help of waveform and logic diagram. (06 Marks)
 - b. Explain the application of SR latch at a switch debouncer circuit. (06 Marks)
 - c. Realize JK and T flip flop using NAND gates and hence derive the characteristic equation for the same. (08 Marks)

OR

6 a. With help of waveforms and output tabular column, explain master slave JK flip flop.

(08 Marks)

- b. Explain negative edge triggered D-flip flop and hence derive an expression for characteristic equation.

 (06 Marks)
- c. Convert SR flip flop to a flip flop.

(06 Marks)

Module-4

7 a. Explain universal shift register using 4:1 multiplexers.

(08 Marks)

- b. With the help of wave form, logic diagram and output table, explain MOD5 ripple counter.

 (06 Marks)
- c. Design a synchronous MOD 3 counter with the following sequence using clocked JK flip flop. Count sequence: 0, 1, 2, 0, 1, 2..... (06 Marks)

OR

a. Explain MOD8 synchronous up down counter.

(06 Marks)

- b. With the help of waveforms, logic diagram and output table with respect to clock, explain MOD8 Johnson counter.

 (08 Marks)
- c. Determine the frequency F_{max} for the synchronous MOD16 counter it delay t_{pd} for each flip flop is 50ηs and t_{pd} for each AND gate is 20ηs. Compare this with F_{max} for a MOD16 ripple counter. Determine the F_{max} for the MOD32 parallel counter. What has to be done to convert from MOD16 to MOD32 parallel counter? (06 Marks)

Module-5

- 9 a. Explain Mealy and Moore model of a clocked synchronous sequence network. (10 Marks)
 - b. Analyze the synchronous circuit
 - i) Write down the excitation and output function
 - ii) Form the state table and diagram
 - iii) Give a word description of the circuit operation.

(10 Marks)

OD

10 a Construct transition table, state table and state diagram for the given circuit.

Fig.Q.10(a)

(10 Marks)

b. Design a synchronous counter using JK F/f to count the sequence 0, 1, 2, 4, 5, 6, 0, 1, 2..... use state diagram and stable table. For the states 011 and 111, next state is 000. (10 Marks)

