Third Semester B.E. Degree Examination, June/July 2023 **Analog Electronic Circuit**

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

Define Q or Operating point 1

(02 Marks)

- What is a clipper circuit? Explain the working of a double ended clipper with a suitable (08 Marks)
- List various types of clamper circuit. With a neat circuit diagram, explain the working of a negative clamper.

OR

- Discuss emitter stablized bias circuit. Also derive expression for I_B, I_C, V_B and V_c. (10 Marks) 2
 - Determine the following for the fixed bias configuration of Fig.2(b). Assume β =50. b.
 - (i) I_{BQ} and I_{CQ} (ii) V_{CEQ} (iii) V_B and V_C (iv) V_{BC}

(10 Marks)

Module-2

- Derive an expression for A_v, Zi and Zo of CE voltage divider bias circuit using hybrid 3 model. (10 Marks)
 - For the collector feedback configuration of Fig 3(b), calculate (i) re (ii) Zi and Zo (iii) Ay and A_I Consider β =200, r_0 =60Kr.

(10 Marks)

OR

(10 Marks)

(10 Marks)

For the network of fig 4(a), determine: (i) r_e (ii) Z_i (iii) Z_o ($r_o = oo$) (iv) A_v ($r_o = \infty$)
(10 Marks)

Fig.4(a)

Why hybrid model is called as hybrid? Obtain h – parameters from equivalent circuit of b. common – emitter configuration. (10 Marks)

Module-3

- 5 a. Define Multistage Amplifier. Derive voltage gain and current gain of a two stage cascaded amplifier. (10 Marks)
 - b. Derive an expression for Zi and Ai for Darlington Emitter follower circuit.

OR

- 6 a. Find out input and output impedance of a current series feedback amplifier. (10 Marks)
 - b. Determine the voltage gain, input and output impedance with feedback for voltage series feedback having A = -100, $Ri = 10 \text{ k}\Omega$, $R_0 = 20 \text{ k}\Omega$ for feedback of i) $\beta = -0.1$ and ii) $\beta = -0.5$.

Module-4

- 7 a. With a neat circuit diagram, explain the AC Operation of series fed class A amplifier.

 Also derive maximum efficiency of the amplifier. (10 Marks)
 - b. Show that maximum efficiency of Class B push pull power amplifier is 78.54%. (10 Marks)

OR

- 8 a. Explain the working of R.C phase shift oscillator. If $R=1~k\Omega$, $R_c=1~k\Omega$ and $C=0.1\mu f$, Calculate the frequency of oscillations. (10 Marks)
 - b. Discuss the working of Wein Bridge Oscillator, with a suitable diagram.

Module-5

- 9 a. Describe the working and characteristics of M Channel JFET. (10 Marks)
 - b. For a self bias circuit, V_{DD} = +20 , R_D = 3.3 k Ω , R_G = 1 M Ω , R_S = 1 k Ω , I_{DSS} = 8mA and V_P = -6V. Determine i) V_{GS} ii) I_D iii) V_{DS} iv) V_S v) V_G vi) V_D . (10 Marks)

OR

10 a. With a neat structure, explain the operation of an n – channel depletion type MOSFET.

(10 Marks)

b. Compare JFET with MOSFET. Sketch the transfer characteristics for an N – channel depletion type MOSFET with $I_{DSS} = 10$ mA and $V_P = -4$ V. (10 Marks)

* * * * *