CBCS SCHEME

USN											18	8EE34
-----	--	--	--	--	--	--	--	--	--	--	----	-------

Third Semester B.E. Degree Examination, Aug./Sept.2020 Analog Electronic Circuits

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. Explain the working of series clipper to clip the input sinusoidal signal:
 - (i) above V_R (ii) below V_R . Draw the input and output waveforms and transfer characteristic. Neglect cut in voltage V_r . Assume clipping action in positive half cycle of input signal. (06 Marks)
 - b. Define operating point in a transistor and explain its significance. (04 Marks)
 - c. Explain the dc analysis of emitter stabilized bias circuit, for this circuit if $R_c = 1 \text{ k}\Omega$, $R_B = 220 \text{ k}\Omega$, $R_E = 1 \text{ k}\Omega$, calculate I_B , I_C , I_E V_{CE} and V_B . Assume $\beta = 200$. (10 Marks)

OR

- 2 a. For collector to base bias circuit obtain expressions for stability factors S_{ICO} , S_{UBE} and S_{β} .
 - b. Design a voltage divider bias circuit if $V_{CC} = 12V$, $V_{CE} = 6V$, $V_E = 1V$, $I_C = 1$ mA, $S_{ICO} = 20$, $\beta = 100$. Draw the circuit (10 Marks)

Module-2

- a. Develop h-parameter model for transistor amplifier, hence draw h-parameter model for CB, CE and CC modes. (10 Marks)
 - b. For a single stage CE amplifier, $R_s = 1 \text{ k}\Omega$, $R_1 = 50 \text{ k}\Omega$, $R_2 = 2 \text{ k}\Omega$, $R_c = 2 \text{ k}\Omega$, $R_L = 2 \text{ k}\Omega$, $h_{fe} = 50$, $h_{oe} = 25 \text{ µA/V}$, $h_{ie} = 1.1 \text{ k}\Omega$ and $h_{re} = 2.5 \times 10^{-4}$. Calculate A_V , R_i , A_i , A_{IS} , A_{VS} and R_0 . Draw the circuit diagram. Use approximate hybrid model. Across RE, bypass capacitor is used.

OR

- 4 a. For common emitter amplifier with collector to base bias circuit, determine A_{I} , Z_{i} , A_{v} , A_{VS} , A_{IS} and Z'_{0} . Draw circuit diagram. $R_{B} = 200 \text{ k}\Omega$, $R_{c} = 10 \text{ k}\Omega$, $h_{ie} = 1.1 \text{ k}\Omega$, $h_{fe} = 50$, $h_{oe} = h_{re} = 0$ and $R_{s} = 1 \text{ k}\Omega$. (10 Marks)
 - b. For emitter voltage follower circuit, obtain expression for A_I, Z_i, A_V, R₀ and R₀'. Use approximate hybrid model. Also state features of emitter follower circuit. (10 Marks)

Module-3

- 5 a. For the Darlington connection, obtain expression for A₁₂, R_{i2} for II stage and A_{I1}, R_{i1} for I stage. (10 Marks)
 - b. Consider a 2 stage RC coupled amplifier for the I stage $R_S=1~k\Omega$, $R_{C_1}=15~k\Omega$, $R_{E_1}=100~\Omega$ $R_1=200~k\Omega$, $R_2=20~k\Omega$. For II stage $R_{C_2}=4~k\Omega$, $R_{E_2}=330~\Omega$, biasing resistors $R_3=47~k\Omega$, $R_4=4.7~k\Omega$. Bypass capacitor is connected across R_{E_1} and R_{E_2} . Assume $h_{ie}=1.2~k\Omega$, $h_{fe}=50$, $h_{oe}=25~\mu\text{A/V}$, $h_{re}=2.5\times10^{-4}$, Determine the overall A_V , A_{VS} , R_{01}' and R_{02}' . Draw the circuit diagram.

OR

- 6 a. Explain the concept of voltage amplifier, current amplifier, transconductance amplifier and transresistance amplifier using Thevenin's or Norton's equivalent circuit. (10 Marks)
 - b. For voltage shunt feedback amplifier topology, obtain expressions for R_{if} and R_{of} .

(10 Marks)

Module-4

- 7 a. Obtain an expression for 2nd harmonic distortion in a power amplifier using 3-point method.
 (10 Marks)
 - b. A class-B push pull amplifier supplies power to a resistive load of 12 Ω . The turns ratio of output transformer is 3:1 and $\eta = 78.5\%$. Determine the maximum power output, maximum power dissipation in each transistor maximum base and collector current in each transistor. Assume $V_{cc} = 20 \text{ V}$ and $h_{E} = 25$. (10 Marks)

ΩR

a. Obtain expression for f_0 and h_{fe} in Colpitt's RF oscillator.

(10 Marks)

b. Compare RC phase shift and Wein bridge oscillator.

(05 Marks)

c. Calculate the values of R and C in a RC phase shift oscillator if $f_0 = 500$ Hz. Draw the circuit diagram. Assume $C = 0.1 \mu F$. (05 Marks)

Module-5

- a. Explain construction, operation and characteristics of enhancement MOSFET. (10 Marks)
 b. Compare D-MOSFET and E-MOSFET. (05 Marks)
 - c. Define transconductance "g_m" in FET and Show that $g_m = g_{m_o} \left(1 \frac{V_{GS}}{V_P} \right)$ (05 Marks)

OR

- 10 a. Consider voltage divider bias circuit of JFET. If $R_D=1.2~k\Omega$, $R_S=2~k\Omega$, $R_1=20~k\Omega$, $R_2=10~k\Omega$, $V_{DD}=12V$, $I_{DSS}=12~mA$, $V_P=-4V$, calculate I_D , V_{GS} , V_G , V_{DS} and V_S . Draw the circuit diagram.
 - b. Consider JFET in fixed bias mode. Derive expressions for Z_{in} , Z_0 and A_V . If $R_G=1$ M Ω , $r_d=50$ k Ω , $g_m=2$ m s , calculate Z_i , A_v and Z_0 . Draw the circuit diagram $R_D=5.1$ k Ω .

(10 Marks)