CBCS SCHEME

USN												18AU32
-----	--	--	--	--	--	--	--	--	--	--	--	--------

Third Semester B.E. Degree Examination, June/July 2023 Engineering Thermodynamics

Time: 3 hrs. Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. Use of thermodynamics data hand book, steam table, psychrometry chart allowed.

Module-1

- 1 a. Distinguish between:
 - i) Open System and Closed System
 - ii) Mechanical and Chemical Equilibrium
 - iii) Intensive and Extensive Properties
 - iv) Macroscopic and Macroscopic Approach. (08 Marks)
 - b. State and explain Zeroth law of thermodynamics.

(04 Marks)

OR

- 2 a. Derive an expression for work done during quasistatic process. (06 Marks)
 - b. Define work and heat, mention similarities and dissimilarities between them. (06 Marks)
 - c. Explain constant volume gas thermometer with neat sketch.

Module-2

- 3 a. Derive Steady Flow Energy Equation (SFEE) state assumptions mode. (08 Marks)
 - b. Prove that internal energy a property of a system.

(08 Marks)

(08 Marks)

c. What are PMM – I and PMM – II?

(04 Marks)

OR

- 4 a. State Kelvin Plank and Clausius statements of second law of thermodynamics and show that violation of Clausis statement leads to violation of Kelvin Planck's statement. (08 Marks)
 - b. One kg of air at 15°C and 98.1KPa is compressed isentroptically to 588.6KPa. Determine the final temperature and the work done. If the air is now cooled to 15°C at constant pressure, find the heat exchanged. (06 Marks)
 - c. A 1m³ container is filled with air at 0.20MPa and 70°C. Calculate the final pressure in the container if 10kJ of heat are added. Assume ideal gas behavior with constant specific heats.

 (06 Marks)

Module-3

5 a. Prove that entropy a property of a system.

(08 Marks)

b. Stat and prove Clausius inequality.

(08 Marks)

c. What is available and unavailable energy?

			ei.
			18AU32
		OR	D.
6	a.	Define following terms:	
		i) Heat of fusion	
		ii) Wet steam	
		iii) Triple point	
		iv) Sensible heat	
		v) Saturation temperature vi) Dryness fraction.	(06 Marks)
	b.	Sketch and explain the PT diagram of water.	(06 Marks)
	c.	Explain with neat sketch, the method of estimating quality of steam by	
	0.	Calonimeter.	(08 Marks)
			,
		Module-4	
7	a.	Explain vapor absorption refrigeration system with a neat sketch.	(08 Marks)
	b.	Explain steam jet refrigeration with sketch.	(08 Marks)
	c.	Explain desirable properties of refrigerants.	(04 Marks)
0		OR	
8	a.	Explain summer air conditioning system for: i) Hot and dry outdoor condition	
		ii) Hot and wet outdoor condition.	(10 Marks)
	b.	A hall is to be air conditioned for 100 persons requiring 0.5m ³ /min/person	
		condition = 35°C DBT, 65% RH, Required conditions = 15°C DBT, 40% RH. T	he required
		conditions are achieved first by cooling and dehumidification and then by heating	
		find:	
		i) Capacity of the humidifier	
		ii) Cooling coil capacity	
		iii) Heating coil capacity.	(10 Marks)
Δ.	_	Module-5 Deniver a compression for well-days in a single start compression by poslection	a alaaranaa
9	a.	Derive an expression for work done in a single stage compressor by neglecting volume.	g clearance (10 Marks)
	b.	Derive the condition for maximum work input to a two-stage compressor with p	
		cooling between stages.	(06 Marks)
	ć.	Explain the necessity of multi-stage compression using P-V diagram.	(04 Marks)
	*		
		OR	
10	a.	Explain open and closed cycle gas turbine cycles.	(10 Marks)
	b.	Explain with a neat sketch:	
		i) Turbo – jet engine	
		ii) Rocket propulsion.	(10 Marks)